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Review: Motivation for Monitors and 
Condition Variables

• Semaphores are a huge step up, but:
– They are confusing because they are dual purpose:

• Both mutual exclusion and scheduling constraints
• Example: the fact that flipping of P’s in bounded buffer gives deadlock is 

not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and condition variables

for scheduling constraints

• Definition: Monitor: a lock and zero or more condition 
variables for managing concurrent access to shared data

– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free
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Review: Condition Variables

• Condition Variable: a queue of threads waiting for something 
inside a critical section
– Key idea: allow sleeping inside critical section by atomically releasing 

lock at time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(): Atomically release lock and go to sleep. Re-acquire lock 

later, before returning. 
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!



Dining Philosophers and 
the Deadlock Concept
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Dining Philosopher’s
• Dijkstra

– A problem that was invented to illustrate a different aspect of 
communication

– Our focus here is on the notion of sharing resources that only 
one user at a time can own

• Philosophers eat/think

• Eating needs two forks

• Pick one fork at a time

Idea is to capture the concept of multiple processes
competing for limited resources



Coding our flawed solution?
Shared: semaphore fork[5];
Init: fork[i] = 1 for all i=0 .. 4

Philosopher i

do {
P(fork[i]);
P(fork[i+1]);

/* eat */

V(fork[i]);
V(fork[i+1]);

/* think */
} while(true);

Oops!  Subject 
to deadlock if 
they all pick up 
their “left” fork 
simultaneously!
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Goals for Today

• Discussion of Deadlocks

• Conditions for its occurrence
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System Model
• There are non-shared computer resources

– Maybe more than one instance

– Printers, Semaphores, Tape drives, CPU

• Processes need access to these resources
– Acquire resource

• If resource is available, access is granted

• If not available, the process is blocked

– Use resource

– Release resource

• Undesirable scenario:
– Process A acquires resource 1, and is waiting for resource 2

– Process B acquires resource 2, and is waiting for resource 1

 Deadlock!
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Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
• Example, low-priority thread waiting for resources constantly in use 

by high-priority threads
– Deadlock: circular waiting for resources

• Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock  Starvation but not vice versa
• Starvation can end (but doesn’t have to)
• Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By
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For example: Semaphores
semaphore: mutex1 = 1    /* protects resource 1 */

mutex2 = 1    /* protects resource 2 */

Process A code:
{

/* initial compute */
P(mutex1)
P(mutex2)

/* use both resources */

V(mutex2)
V(mutex1)

}

Process B code:
{

/* initial compute */
P(mutex2)
P(mutex1)

/* use both resources */

V(mutex2)
V(mutex1)

}
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Deadlocks

• Definition: Deadlock exists among a set of processes if 
– Every process is waiting for an event 

– This event can be caused only by another process in the set
• Event is the acquire of release of another resource

One-lane bridge
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Four Conditions for Deadlock

• Coffman et. al. 1971

• Necessary conditions for deadlock to exist:
– Mutual Exclusion

• At least one resource must be held is in non-sharable mode

– Hold and wait
• There exists a process holding a resource, and waiting for another

– No preemption
• Resources cannot be preempted

– Circular wait
• There exists a set of processes {P1, P2, … PN}, such that

– P1 is waiting for P2, P2 for P3, …. and PN for P1

All four conditions must hold for deadlock to occur



Real World Deadlocks?

• Truck A has to wait
for truck B to
move

• Not
deadlocked



Real World Deadlocks?

• Gridlock



Real World Deadlocks?

• Gridlock



Testing for deadlock

• Steps
– Collect “process state” and use it to build a graph

• Ask each process “are you waiting for anything”?

• Put an edge in the graph if so

– We need to do this in a single instant of time, not while things 
might be changing

• Now need a way to test for cycles in our graph



Testing for deadlock

• One way to find cycles
– Look for a node with no outgoing edges

– Erase this node, and also erase any edges coming into it
• Idea: This was a process people might have been waiting for, but it 

wasn’t waiting for anything else

– If (and only if) the graph has no cycles, we’ll eventually be able 
to erase the whole graph!

• This is called a graph reduction algorithm



Graph reduction example
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This graph can be “fully reduced”, hence there 
was no deadlock at the time the graph was drawn.

Obviously, things could change later!



Graph reduction example

• This is an example of 
an “irreducible” graph

• It contains a cycle 
and represents a 
deadlock, although 
only some processes 
are in the cycle



What about “resource” waits?

• When dining philosophers wait for one-another, they 
don’t do so directly
– Erasmus doesn’t “wait” for Ptolemy

• Instead, they wait for resources
– Erasmus waits for a fork… which Ptolemy exclusively holds

• Can we extend our graphs to represent resource wait?



Resource-wait graphs

• We’ll use two kinds of nodes

• A process:  P3 will be represented as circle:

• A resource: R7 will be represented as rectangle:
– A resource often has multiple identical

units, such as “blocks of memory”
– Represent these as circles in the box

• Arrow from a process to a resource: “I want 
k units of this resource.” Arrow to a process:
this process holds k units of the resource
– P3 wants 2 units of R7

3

7   

2



Resource-wait graphs
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Reduction rules?

• Find a process that can have all its current 
requests satisfied (e.g. the “available amount” of 
any resource it wants is at least enough to 
satisfy the request)

• Erase that process (in effect: grant the request, 
let it run, and eventually it will release the 
resource)

• Continue until we either erase all the process 
nodes or have an irreducible component.  In the 
latter case we’ve identified a deadlock



This graph is reducible: The system 
is not deadlocked
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This graph is not reducible: The 
system is deadlocked
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Comments

• It isn’t common for systems to actually implement this 
kind of test 

• However, we’ll later use a version of the resource 
reduction graph as part of an algorithm called the 
“Banker’s Algorithm”

• Idea is to schedule the granting of resources so as to 
avoid potentially deadlock states



Some questions you might ask

• Does the order in which we do the reduction matter?
– Answer: No.  The reason is that if a node is a candidate for 

reduction at step i, and we don’t pick it, it remains a candidate for 
reduction at step i+1

– Thus eventually, no matter what order we do it in, we’ll reduce by 
every node where reduction is feasible



Some questions you might ask

• If a system is deadlocked, could this go away?
– No, unless someone kills one of the threads or 

something causes a process to release a resource

– Many real systems put time limits on “waiting” 
precisely for this reason.  When a process gets a 
timeout exception, it gives up waiting and this also 
can eliminate the deadlock

– But that process may be forced to terminate itself 
because often, if a process can’t get what it needs, 
there are no other options available!



Some questions you might ask

• Suppose a system isn’t deadlocked at time T.

• Can we assume it will still be free of deadlock at time 
T+1?
– No, because the very next thing it might do is to run some 

process that will request a resource…
… establishing a cyclic wait

… and causing deadlock
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Dealing with Deadlocks

1. Reactive Approaches:
– Periodically check for evidence of deadlock

• For example, using a graph reduction algorithm

– Then need a way to recover
• Could blue screen and reboot the computer

• Could pick a “victim” and terminate that thread
– But this is only possible in certain kinds of applications

– Basically, thread needs a way to clean up if it gets terminated and has 
to exit in a hurry!
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Dealing with Deadlocks

2. Proactive Approaches:
– Deadlock Prevention

• Prevent one of the 4 necessary conditions from arising

• …. This will prevent deadlock from occurring

– Deadlock Avoidance
• Carefully allocate resources based on future knowledge

• Deadlocks are prevented

3. Ignore the problem
– Pretend deadlocks will never occur

– Ostrich approach… but surprisingly common!



Deadlock Prevention
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Deadlock Prevention

• Can the OS prevent deadlocks?

• Prevention: Negate one of necessary conditions
– Mutual exclusion:

• Make resources sharable

• Not always possible (spooling?)

– Hold and wait
• Do not hold resources when waiting for another

 Request all resources before beginning execution

Processes do not know what all they will need

Starvation (if waiting on many popular resources)

Low utilization (Need resource only for a bit)

• Alternative: Release all resources before requesting anything new

– Still has the last two problems
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Deadlock Prevention

• Prevention: Negate one of necessary conditions
– No preemption:

• Make resources preemptable (2 approaches)

• Preempt requesting processes’ resources if all not available

• Preempt resources of waiting processes to satisfy request

• Good when easy to save and restore state of resource

– CPU registers, memory virtualization

• Bad if in middle of critical section and resource is a lock

– Circular wait: 
• Impose partial ordering on resources, request them in order
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Breaking Circular Wait
• Order resources (lock1, lock2, …)

• Acquire resources in strictly increasing/decreasing order

• When requests to multiple resources of same order:
– Make the request a single operation

• Intuition: Cycle requires an edge from low to high, and 
from high to low numbered node, or to same node

Ordering not always possible, low resource utilization

1

2

3

4
1

1 2
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Review
• What is deadlocks
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

• Only one thread at a time can use a resource
– Hold and wait

• Thread holding at least one resource is waiting to acquire additional 
resources held by other threads

– No preemption
• Resources are released only voluntarily by the threads

– Circular wait
•  set {T1, …, Tn} of threads with a cyclic waiting pattern
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Review (2) 
• Techniques for addressing Deadlock

– Allow system to enter deadlock and then recover

– Ensure that system will never enter a deadlock

– Ignore the problem and pretend that deadlocks never occur in the 
system

• Deadlock prevention
– Prevent one of four necessary conditions for deadlock



39

Goals for today 
• Deadlock avoidance

– Assesses, for each allocation, whether it has the potential to lead 
to deadlock

– Banker’s algorithm gives one way to assess this

• Deadlock detection and recover
– Attempts to assess whether waiting graph can ever make progress

– Recover it not



Deadlock Avoidance
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Deadlock Avoidance

• If we have future information
– Max resource requirement of each process before they execute

• Can we guarantee that deadlocks will never occur?

• Avoidance Approach:
– Before granting resource, check if state is safe

– If the state is safe  no deadlock!
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Safe State

• A state is said to be safe, if it has a process sequence

{P1, P2,…, Pn}, such that for each Pi,

the resources that Pi can still request can be satisfied by 
the currently available resources plus the resources held 
by all Pj, where j < i

• State is safe because OS can definitely avoid deadlock
– by blocking any new requests until safe order is executed

• This avoids circular wait condition
– Process waits until safe state is guaranteed
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Safe State Example
• Suppose there are 12 tape drives

max need current usage could ask for
P0 10 5 5
P1 4 2 2
P2 9 2 7

3 drives remain

• current state is safe because a safe sequence exists: 
<p1,p0,p2>

p1 can complete with current resources
p0 can complete with current+p1
p2 can complete with current +p1+p0

• What if p2 requests 1 drive now?
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Safe State Example
• Suppose p2 gets 1 drive

max need current usage could ask for
P0 10 5 5
P1 4 2 2
P2 9 3 6

2 drives remain

• no safe sequence exists:
p1 can complete with current resources
p0 and p2 can not complete with current+p1=2+2=4

• so p2’s request is denied
– then it must wait to avoid unsafe state.
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Safe State Example

(One resource class only)
process   holding   max claims
A            4                6
B            4                11
C            2                 7

unallocated: 2

safe sequence: A,C,B

If C should have a claim of 9 instead of 7,

there is no safe sequence.

need
2
7
5
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Res. Alloc. Graph Algorithm
• Deadlock can be described using a resource allocation 

graph, RAG

• Works if only one instance of each resource type

• Algorithm:
– Add a claim edge, PiRj if Pi can request Rj in the future

• Represented by a dashed line in graph

– A request PiRj can be granted only if:
• Adding an assignment edge Rj  Pi does not introduce cycles

– Since cycles imply unsafe state

R1

P1 P2

R2

R1

P1 P2

R2
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Res. Alloc. Graph issues:

• Works if only one instance of each resource type

• A little complex to implement
– Would need to make it part of the system

– E.g. build a “resource management” library
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Banker’s Algorithm

• Suppose we know the “worst case” resource needs of 
processes in advance
– A bit like knowing the credit limit on your credit cards.            

(This is why they call it the Banker’s Algorithm)

• Observation: Suppose we just give some process ALL 
the resources it could need… 
– Then it will execute to completion.  

– After which it will give back the resources.

• Like a bank: If Visa just hands you all the money your 
credit lines permit, at the end of the month, you’ll pay 
your entire bill, right?
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Banker’s Algorithm

• So…
– A process pre-declares its worst-case needs

– Then it asks for what it “really” needs, a little at a time

– The algorithm decides when to grant requests

• It delays a request unless:
– It can find a sequence of processes…

– …. such that it could grant their outstanding need…

– … so they would terminate… 

– … letting it collect their resources… 

– … and in this way it can execute everything to completion!
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Banker’s Algorithm

• How will it really do this?
– The algorithm will just implement the graph reduction method for 

resource graphs

– Graph reduction is “like” finding a sequence of processes that 
can be executed to completion

• So: given a request
– Build a resource graph

– See if it is reducible, only grant request if so

– Else must delay the request until someone releases some 
resources, at which point can test again
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Banker’s Algorithm

• Decides whether to grant a resource request.  
• Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i
max[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
need[1..n,1..m] max # resource Rj that Pi may still request

needi = maxi - allocationi

let request[i] be vector of # of resource Rj Process Pi wants
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Basic Algorithm

1. If request[i] > need[i] then 
error (asked for too much)

2. If request[i] > available[i] then 
wait (can’t supply it now)

3. Resources are available to satisfy the request
Let’s assume that we satisfy the request. Then we would have:

available = available - request[i]
allocation[i] = allocation [i] + request[i]
need[i] = need [i] - request [i]

Now, check if this would leave us in a safe state:
if yes, grant the request, 
if no, then leave the state as is and cause process to wait.
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Safety Check

work[1..m] = available            /* how many resources are available */
finish[1..n] = false (for all i)  /* none finished yet */

Step 1: Find an i such that finish[i]=false and need[i] <= work
/* find a proc that can complete its request now */
if no such i exists, go to step 3   /* we’re done */

Step 2: Found an i:
finish [i] = true  /* done with this process */
work= work + allocation [i] 

/* assume this process were to finish, and its allocation  back to the 
available list */
go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not
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Banker’s Algorithm: Example
Allocation Max Available Need
A  B  C         A  B  C      A  B  C A B C

P0    0  1  0         7  5  3      3  3  2 7 4 3
P1    2  0  0         3  2  2     1 2 2
P2    3  0  2         9  0  2   6 0 0
P3    2  1  1         2  2  2   0 1 1
P4    0  0  2         4  3  3   4 3 1

this is a safe state: safe sequence  <P1, P3, P4, P2, P0>

Suppose that P1 requests (1,0,2) 

- (1,0,2)<(3,2,2) and (1,0,2)<(1,2,2)

- add it to P1’s allocation and subtract it from Available
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Banker’s Algorithm: Example
Allocation Max Available Need
A  B  C        A  B  C         A  B  C A B C

P0    0  1  0        7  5  3         2  3  0 7 4 3
P1    3  0  2 3  2  2     0 2 0
P2    3  0  2        9  0  2   6 0 0
P3    2  1  1        2  2  2   0 1 1
P4    0  0  2        4  3  3   4 3 1

This is still safe: safe seq <P1, P3, P4, P0, P2>, so request of p1 can be 
granted

In this new state,
P4 requests (3,3,0)    

not enough available resources , p4’s request will be denied            
P0 requests (0,2,0)    

let’s check resulting state
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Banker’s Algorithm: Example
Allocation Max Available

A  B  C      A  B  C       A  B  C
P0     0  3  0 7  5  3       2  1  0
P1     3  0  2      3  2  2     
P2     3  0  2      9  0  2   
P3     2  1  1      2  2  2   
P4     0  0  2      4  3  3   

This is unsafe state (why?)

So P0’s request will be denied

Problems with Banker’s Algorithm?



Deadlock Detection & Recovery
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Deadlock Detection & Recovery

• If neither avoidance or prevention is implemented, 
deadlocks can (and will) occur. 

• Coping with this requires:
– Detection: finding out if deadlock has occurred 

• Keep track of resource allocation (who has what)

• Keep track of pending requests (who is waiting for what)

– Recovery: untangle the mess.

• Expensive to detect, as well as recover
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Using the RAG Algorithm to detect 
deadlocks

• Suppose there is only one instance of each resource
• Example 1: Is this a deadlock?

– P1 has R2 and R3, and  is requesting R1
– P2 has R4 and is requesting R3
– P3 has R1 and is requesting R4

• Example 2: Is this a deadlock?
– P1 has R2, and  is requesting R1 and R3
– P2 has R4 and is requesting R3
– P3 has R1 and is requesting R4

• Use a wait-for graph:
– Collapse resources
– An edge PiPk exists only if RAG has PiRj & Rj  Pk

– Cycle in wait-for graph  deadlock!

P1

R2 R3

P2

P3

R4

R1
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Resource-Allocation Graph and 
Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph
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2nd Detection Algorithm

• What if there are multiple resource instances?

• Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i
request[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
finish[1..n]                true if Pi’s request can be satisfied

let request[i] be vector of # instances of each resource Pi wants
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2nd Detection Algorithm

1. work[]=available[]
for all i < n, if allocation[i]  0

then finish[i]=false else finish[i]=true
2. find an index i such that:

finish[i]=false;
request[i]<=work

if no such i exists, go to 4.
3. work=work+allocation[i]

finish[i] = true, go to 2
4. if finish[i] = false for some i, 

then system is deadlocked with Pi in deadlock
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Example

Finished = {F, F, F, F}; 
Work = Available = (0, 0, 1);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3 0 0 1

P4 1 1 1

Allocation Request
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Example

Finished = {F, F, T, F}; 
Work = (1, 1, 1);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3

P4 1 1 1

Allocation Request
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Example

Finished = {F, F, T, T}; 
Work = (2, 2, 2);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3

P4

Allocation Request
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Example

Finished = {F, T, T, T}; 
Work = (4, 3, 4);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2

P3

P4

Allocation Request
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Example

Finished = {T, T, T, T}; 
Work = (5, 4, 5);

R1 R2 R3

P1

P2

P3

P4

R1 R2 R3

P1

P2

P3

P4

Allocation Request
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When to run Detection Algorithm?

• For every request that cannot be immediately satisfied?

• For every resource request?

• Once every hour?

• When CPU utilization drops below  40%?
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Deadlock Recovery

• Killing one/all deadlocked processes
– Crude, but effective

– Keep killing processes, until deadlock broken

– Repeat the entire computation

• Preempt resource/processes until deadlock broken
– Selecting a victim (# resources held, how long executed)

– Rollback (partial or total)

– Starvation (prevent a process from being executed)
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Summary
• Dining Philosophers Problem

– Highlights need to multiplex resources
– Context to discuss starvation, deadlock, livelock

• Four conditions for deadlocks
– Mutual exclusion

• Only one thread at a time can use a resource
– Hold and wait

• Thread holding at least one resource is waiting to acquire additional 
resources held by other threads

– No preemption
• Resources are released only voluntarily by the threads

– Circular wait
•  set {T1, …, Tn} of threads with a cyclic waiting pattern
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Summary (2) 
• Techniques for addressing Deadlock

– Allow system to enter deadlock and then recover

– Ensure that system will never enter a deadlock

– Ignore the problem and pretend that deadlocks never occur in the 
system

• Deadlock prevention
– Prevent one of four necessary conditions for deadlock

• Deadlock avoidance
– Assesses, for each allocation, whether it has the potential to lead 

to deadlock

– Banker’s algorithm gives one way to assess this

• Deadlock detection and recover 
– Attempts to assess whether waiting graph can ever make progress

– Recover it not



Exercises:

7.7 

7.11
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