Deadlocks: Part |

Prevention and Avoidance
Yi Shi
Fall 2018
Xi‘an Jiaotong University

Review: Motivation for Monitors and
Condition Variables

« Semaphores are a huge step up, but:

— They are confusing because they are dual purpose:
« Both mutual exclusion and scheduling constraints

» Example: the fact that flipping of P’s in bounded buffer gives deadlock is
not immediately obvious

— Cleaner idea: Use loclgs for mutual exclusion and condition variables
for scheduling constraints

 Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared data
— Use of Monitors is a programming paradigm
— Some languages like Java provide monitors in the language

« The lock provides mutual exclusion to shared data:
— Always acquire before accessing shared data structure

— Always release after finishing with shared data
— Lock initially free

Review: Condition Variables

Condition Variable: a queue of threads waiting for something
inside a critical section

— Key idea: allow sleeping inside critical section by atomically releasing
lock at time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section

Operations:

- Wait (): Atomically release lock and go to sleep. Re-acquire lock
later, before returning.

- Signal (): Wake up one waiter, if any
— Broadcast () : Wake up all waiters

Rule: Must hold lock when doing condition variable ops!

Dining Philosophers anad
the Deadlock Concept

Dining Philosopher’s

* Dijkstra

— A problem that was invented to illustrate a different aspect of
communication

— Our focus here is on the notion of sharing resources that only
one user at a time can own

* Philosophers eat/think
« Eating needs two forks
* Pick one fork at a time

|dea is to capture the concept of multiple processes
competing for limited resources 5

Coding our flawed solution?

Shared: semaphore fork[5];
Init: fork[i]=1forall i=0 .. 4

Philosopher i

do {
P(fork[i]);

P(fork[i+1]);

/* eat */

V(forkl[i]);

V(fork[i+1]);

/* think */
} while(true);

Oops! Subject
to deadlock if
they all pick up
their “left” fork
simultaneously!

A

Goals for Today

 Discussion of Deadlocks
 Conditions for its occurrence

System Model

 There are non-shared computer resources
— Maybe more than one instance
— Printers, Semaphores, Tape drives, CPU

* Processes need access to these resources

— Acquire resource
 If resource is available, access is granted
 |f not available, the process is blocked

— Use resource
— Release resource

* Undesirable scenario:
— Process A acquires resource 1, and is waiting for resource 2
— Process B acquires resource 2, and is waiting for resource 1
= Deadlock!

Starvation vs Deadlock

o Starvation vs. Deadlock

— Starvation: thread waits indefinitely
« Example, low-priority thread waiting for resources constantly in use
by high-priority threads
— Deadlock: circular waiting for resources

« Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

— Deadlock = Starvation but not vice versa
« Starvation can end (but doesn’t have to)
 Deadlock can’t end without external intervention

For example: Semaphores

semaphore: mutexl = 1

rotects resource 1 */

mutex2 = 1 /* protects resource 2 */

Process A code:

{
/* initial compute */
P(mutex1)
P(mutex2)

/* use both resources */

V(mutex?2)
V(mutexl)

}

Process B code:

{
/* initial compute */
P(mutex?2)
P(mutex1)

/* use both resources */

V(mutex?2)
V(mutexl)

}

10

Deadlocks

 Definition: Deadlock exists among a set of processes if
— Every process is waiting for an event

— This event can be caused only by another process in the set
» Event is the acquire of release of another resource

One-lane bridge

11

Four Conditions for Deadlock

« Coffman et. al. 1971

* Necessary conditions for deadlock to exist:
— Mutual Exclusion
» At least one resource must be held is in non-sharable mode
— Hold and wait
» There exists a process holding a resource, and waiting for another
— No preemption
» Resources cannot be preempted
— Circular wait

» There exists a set of processes {P,, P,, ... Py}, such that
— P, is waiting for P,, P, for P, and Py for P,

All four conditions must hold for deadlock to occur

12

Real World Deadlocks?

 Truck A has to walit
for truck B to
move

 Not
deadlocked

Real World Deadlocks?

e Gridlock

IEL_ %
=
I

Real World Deadlocks?

* Gridlock

@

o

Testing for deadlock

o Steps
— Collect “process state” and use it to build a graph

» Ask each process “are you waiting for anything”?
« Put an edge in the graph if so

— We need to do this in a single instant of time, not while things
might be changing

 Now need a way to test for cycles in our graph

Testing for deadlock

* One way to find cycles
— Look for a node with no outgoing edges

— Erase this node, and also erase any edges coming into it

» |dea: This was a process people might have been waiting for, but it
wasn’t waiting for anything else

— If (and only if) the graph has no cycles, we’ll eventually be able
to erase the whole graph!

* This is called a graph reduction algorithm

Graph reduction example

This graph can be “fully reduced”, hence there
was no deadlock at the time the graph was drawn.

Obviously, things could change later!

0/

// -
° o) yd \@

Graph reduction example

* This is an example of
an “irreducible” graph

* |t contains a cycle
and represents a
deadlock, although
only some processes

/ .

O
are in the cycle / \
O

What about “resource” waits?

« When dining philosophers wait for one-another, they
don’t do so directly

— Erasmus doesn’t “wait” for Ptolemy

* Instead, they wait for resources
— Erasmus waits for a fork... which Ptolemy exclusively holds

« Can we extend our graphs to represent resource wait?

Resource-wait graphs

We'll use two kinds of nodes
A process: P; will be represented as circle:

A resource: R, will be represented as rectangle:

— A resource often has multiple identical
units, such as “blocks of memory”

— Represent these as circles in the box

Arrow from a process to a resource: “| want
k units of this resource.” Arrow to a process:
this process holds k units of the resource

— P; wants 2 units of R,

Resource-wait graphs

Reduction rules?

* Find a process that can have all its current
requests satisfied (e.g. the “available amount” of
any resource it wants is at least enough to
satisfy the request)

* Erase that process (in effect. grant the request,
let it run, and eventually it will release the
resource)

« Continue until we either erase all the process
nodes or have an irreducible component. In the
latter case we've identified a deadlock

This graph is reducible: The system
IS not deadlocked

This graph is not reducible: The
system is deadlocked

Comments

 Itisn't common for systems to actually implement this
kind of test

 However, we'll later use a version of the resource
reduction graph as part of an algorithm called the
“Banker’s Algorithm”

« |dea is to schedule the granting of resources so as to
avoid potentially deadlock states

Some questions you might ask

 Does the order in which we do the reduction matter?

— Answer: No. The reason is that if a node is a candidate for
reduction at step i, and we don’t pick it, it remains a candidate for
reduction at step i+1

— Thus eventually, no matter what order we do it in, we'll reduce by
every node where reduction is feasible

Some questions you might ask

 |If a system is deadlocked, could this go away?

— No, unless someone kills one of the threads or
something causes a process to release a resource

— Many real systems put time limits on “waiting”
precisely for this reason. When a process gets a
timeout exception, it gives up waiting and this also
can eliminate the deadlock

— But that process may be forced to terminate itself
because often, if a process can't get what it needs,
there are no other options available!

Some questions you might ask

« Suppose a system isn’t deadlocked at time T.

« Can we assume it will still be free of deadlock at time
T+17?
— No, because the very next thing it might do is to run some
process that will request a resource...
... establishing a cyclic wait
... and causing deadlock

1.

Dealing with Deadlocks

Reactive Approaches:

— Periodically check for evidence of deadlock

« For example, using a graph reduction algorithm
— Then need a way to recover

» Could blue screen and reboot the computer

» Could pick a “victim” and terminate that thread
— But this is only possible in certain kinds of applications

— Basically, thread needs a way to clean up if it gets terminated and has
to exit in a hurry!

30

Dealing with Deadlocks

2. Proactive Approaches:

— Deadlock Prevention
» Prevent one of the 4 necessary conditions from arising
 This will prevent deadlock from occurring

— Deadlock Avoidance
» Carefully allocate resources based on future knowledge

» Deadlocks are prevented
3. lgnore the problem
— Pretend deadlocks will never occur
— Ostrich approach... but surprisingly common!

31

Deadlock Prevention

Deadlock Prevention

« Can the OS prevent deadlocks?

* Prevention: Negate one of necessary conditions

— Mutual exclusion:
« Make resources sharable
* Not always possible (spooling?)
— Hold and wait
« Do not hold resources when waiting for another
= Request all resources before beginning execution
¢ Processes do not know what all they will need
¢ Starvation (if waiting on many popular resources)
¢ Low utilization (Need resource only for a bit)
 Alternative: Release all resources before requesting anything new
— Still has the last two problems
33

Deadlock Prevention

* Prevention: Negate one of necessary conditions
— No preemption:
» Make resources preemptable (2 approaches)
» Preempt requesting processes’ resources if all not available
» Preempt resources of waiting processes to satisfy request
» Good when easy to save and restore state of resource
— CPU registers, memory virtualization

» Bad if in middle of critical section and resource is a lock

— Circular wait:
* Impose partial ordering on resources, request them in order

34

Breaking Circular Wait

* Order resources (lock1, lock2, ...)
* Acquire resources in strictly increasing/decreasing order

* When requests to multiple resources of same order:
— Make the request a single operation

 Intuition: Cycle requires an edge from low to high, and
from high to low numbered node, or to same node

¥ Ordering not always possible, low resource utilization 5

Deadlocks: Part I
Avoidance, Detection and

Recovery
Yi Shi
Fall 2018
Xi‘an Jiaotong University

Review

 What is deadlocks

« Starvation vs. Deadlock
— Starvation: thread waits indefinitely
— Deadlock: circular waiting for resources

» Four conditions for deadlocks
— Mutual exclusion
* Only one thread at a time can use a resource
— Hold and wait

« Thread holding at least one resource is waiting to acquire additional
resources held by other threads

— No preemption

» Resources are released only voluntarily by the threads
— Circular wait

« Jdset{T,, ..., T,} of threads with a cyclic waiting pattern

37

Review (2)

« Techniques for addressing Deadlock
— Allow system to enter deadlock and then recover
— Ensure that system will never enter a deadlock

— Ignore the problem and pretend that deadlocks never occur in the
system

« Deadlock prevention
— Prevent one of four necessary conditions for deadlock

38

Goals for today

 Deadlock avoidance

— Assesses, for each allocation, whether it has the potential to lead
to deadlock

— Banker’s algorithm gives one way to assess this

* Deadlock detection and recover
— Attempts to assess whether waiting graph can ever make progress
— Recover it not

39

Deadlock Avoidance

Deadlock Avoidance

 If we have future information
— Max resource requirement of each process before they execute

« Can we guarantee that deadlocks will never occur?

* Avoidance Approach:
— Before granting resource, check if state is safe
— If the state is safe = no deadlock!

41

Safe State

« A state is said to be safe, if it has a process sequence
{P,, P,,..., P.}, such that for each P,

the resources that P, can still request can be satisfied by
the currently available resources plus the resources held
by all P;, where j <1

« State is safe because OS can definitely avoid deadlock
— by blocking any new requests until safe order is executed

* This avoids circular wait condition
— Process waits until safe state is guaranteed

42

Safe State Example

Suppose there are 12 tape drives

max need current usage could ask for
PO 10 5 5
P1 4 2 2
P2 9 2 7

3 drives remain

current state is safe because a safe sequence exists:
<p1,p0,p2>

p1 can complete with current resources

pO can complete with current+p1

p2 can complete with current +p1+p0

What if p2 requests 1 drive now?

43

Safe State Example

« Suppose p2 gets 1 drive

max need current usage could ask for
PO 10 5 5
P1 4 2 2
P2 9 3 6

2 drives remain

* no safe sequence exists:
p1 can complete with current resources
pO and p2 can not complete with current+p1=2+2=4

* SO p2’'s request is denied
— then it must wait to avoid unsafe state.

44

Safe State Example

(One resource class only)
process holding max claims need

A 4 6 2
B 4 11 7
C 2 7 5

unallocated: 2

safe sequence: A,C,B

If C should have a claim of 9 instead of 7,
there is no safe sequence.

45

Res. Alloc. Graph Algorithm

* Deadlock can be described using a resource allocation
graph, RAG
« Works if only one instance of each resource type
* Algorithm:
— Add a claim edge, P.—R; if P, can request R; in the future

* Represented by a dashed line in graph

— Arequest P.—R; can be granted only if:
* Adding an assignment edge R; — P; does not introduce cycles
— Since cycles imply unsafe state

E/ R2

46

Res. Alloc. Graph issues:

* Works if only one instance of each resource type

* A little complex to implement
— Would need to make it part of the system
— E.g. build a “resource management” library

47

Banker's Algorithm

« Suppose we know the “worst case” resource needs of
processes in advance
— A Dbit like knowing the credit limit on your credit cards.
(This is why they call it the Banker’s Algorithm)
* QObservation: Suppose we just give some process ALL
the resources it could need...
— Then it will execute to completion.
— After which it will give back the resources.

« Like a bank: If Visa just hands you all the money your
credit lines permit, at the end of the month, you'll pay
your entire bill, right?

48

Banker's Algorithm

So...

— A process pre-declares its worst-case needs
— Then it asks for what it “really” needs, a little at a time
— The algorithm decides when to grant requests

It delays a request unless:
— It can find a sequence of processes...

.... such that it could grant their outstanding need...

... SO they would terminate...

... letting it collect their resources...

... and in this way it can execute everything to completion!

49

Banker's Algorithm

* How will it really do this?

— The algorithm will just implement the graph reduction method for
resource graphs

— Graph reduction is “like” finding a sequence of processes that
can be executed to completion
* S0: given a request
— Build a resource graph
— See if it is reducible, only grant request if so

— Else must delay the request until someone releases some
resources, at which point can test again

50

Banker's Algorithm

Decides whether to grant a resource request.
Data structures:

n: integer # of processes

m: integer # of resources

available[1..m] available[i] is # of avail resources of type i
max[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
need[l..n,1.m] max # resource Rj that Pi may still request

need. = max; - allocation,

let request[i] be vector of # of resource Rj Process Pi wants

51

Basic Algorithm

If request[i] > need[i] then
error (asked for too much)
If request[i] > available[i] then
wait (can't supply it now)
Resources are available to satisfy the request
Let's assume that we satisfy the request. Then we would have:
available = available - request[i]
allocation[i] = allocation [i] + request([i]
need[i] = need [i] - request [i]
Now, check if this would leave us in a safe state:
if yes, grant the request,
if no, then leave the state as is and cause process to wait.

52

Safety Check

work[1..m] = available /* how many resources are available */
finish[1..n] = false (for all i) /* none finished yet */

Step 1: Find an i such that finish[il=false and need[i] <= work
/* find a proc that can complete its request now */
if no such i exists, go to step 3 /* we're done */

Step 2: Found an i
finish [i] = true /* done with this process */
work= work + allocation [i]

/* assume this process were to finish, and its allocation back to the
available list */

go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not

53

Banker's Algorithm: Example

Allocation Max Available Need

A B C A B C A B C ABC
PO 010 7 5 3 3 32 743
PL 2 0O 3 2 2 122
P2 3 0 2 9 0 2 600
P3 211 2 2 2 011
P4 0O O 2 4 3 3 4 31

this is a safe state: safe sequence <P1, P3, P4, P2, PO>

Suppose that P1 requests (1,0,2)
- (1,0,2)<(3,2,2) and (1,0,2)<(1,2,2)

- add it to P1’s allocation and subtract it from Available
54

Banker's Algorithm: Example

Allocation Max Available Need

A B C A B C A B C ABC
PO 010 7 5 3 2 30 743
PIL 3 0 2 3 2 2 020
P2 3 0 2 9 0 2 600
P3 21 1 2 2 2 011
P4 O O 2 4 3 3 431

This is still safe: safe seq <P1, P3, P4, PO, P2>, so request of p1 can be
granted

In this new state,
P4 requests (3,3,0)

not enough available resources , p4’s request will be denied
PO requests (0,2,0)

let's check resulting state -

Banker's Algorithm: Example

Allocation Max Available
A B C A B C A B C
PO O 30 7 5 3 210
P1 302 3 2 2
P2 3 02 9 0 2
P3 2 1 1 2 2 2
P4 O 0 2 4 3 3

This is unsafe state (why?)
So PO’s request will be denied

Problems with Banker's Algorithm?

56

Deadlock Detection & Recovery

Deadlock Detection & Recovery

 If neither avoidance or prevention is implemented,
deadlocks can (and will) occur.
« Coping with this requires:
— Detection: finding out if deadlock has occurred

» Keep track of resource allocation (who has what)
» Keep track of pending requests (who is waiting for what)

— Recovery: untangle the mess.
« EXpensive to detect, as well as recover

58

Using the RAG Algorithm to detect

deadlocks

Suppose there is only one instance of each resource

Example 1: Is this a deadlock?
— P1 has R2 and R3, and is requesting R1

P1

— P2 has R4 and is requesting R3 /\

— P3 has R1 and is requesting R4 R2

Example 2: Is this a deadlock?

— P1 has R2, and is requesting R1 and R3
— P2 has R4 and is requesting R3

— P3 has R1 and is requesting R4

Use a wait-for graph:

— Collapse resources

— An edge P—P, exists only if RAG has P—R; & R,— P
— Cycle in wait-for graph = deadlock!

R3

!

P2

t

R4
0

P3

()
R1

Resource-Allocation Graph and
Wait-for Graph

R R, R

@),
ES

DIRC QG

(P—(P—(")

(AR, ¥
& D
4

R R
(a) (b)

Resource-Allocation Graph Corresponding wait-for graph

60

2nd Detection Algorithm

What if there are multiple resource instances?

Data structures:

n: intfeger # of processes

m: infeger # of resources

available[1..m] available[i] is # of avail resources of type i
request[l..n,1.m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
finish[1..n] true if Pi's request can be satisfied

let request[i] be vector of # instances of each resource Pi wants

61

2nd Detection Algorithm

work[J]=available[]
forall i < n, if allocation[i]= 0
then finish[i]=false else finish[i]=true
find an index i such that:
finish[i]=false;
request[ilk=work
if no such i exists, go to 4.
work=work+allocation][i]
finish[i] = true, go to 2
if finish[i] = false for some i,
then system is deadlocked with Pi in deadlock

62

Example

Finished = {F, F, F, F};

Work = Available = (0, O, 1);

R, R, R,
P, 1 1 1
P, 2 1 2
P, 1 1 0
P, 1 1 1
Allocation

R, R, R,

P, 3 2 1

P, 2 2 1

P, 0 0)
P, 1 1 1

Request

63

Example

Finished = {F, F, T, F};
Work = (1,1, 1);

R, R, R,

P, 1 1 1

P, 2 1 2

P, 1 1 0

P, 1 1 1
Allocation

R1 R2 R3
P, 2 1
P, 2 1
P3
{ 1 1
Request

64

Example

Finished = {F, F, T, T};

Work = (2, 2, 2);

R, R, R,

P, 1 1 1

P, 2 1 2

P, 1 1 0

P, 1 1 1
Allocation

R, R, R,
P, 3 2 1
P3
I:’4

Request

65

Example

Finished={F, T, T, T};

Work = (4, 3, 4);

R, R, R,
P, 1 1 1
P, 2 1 2
P, 1 1 0
P, 1 1 1
Allocation

R, R, R,
; 3 2)
P2
P3
P4

Request

66

Finished ={T, T, T, T};
Work = (5, 4, b);

Example

R, R, R,
P
P,
P3
Py
Allocation

Request

67

When to run Detection Algorithm?

For every request that cannot be immediately satisfied?
For every resource request?

Once every hour?

When CPU utilization drops below 40%7

68

Deadlock Recovery

 Killing one/all deadlocked processes
— Crude, but effective
— Keep killing processes, until deadlock broken
— Repeat the entire computation

* Preempt resource/processes until deadlock broken
— Selecting a victim (# resources held, how long executed)
— Rollback (partial or total)
— Starvation (prevent a process from being executed)

69

Summary

* Dining Philosophers Problem
— Highlights need to multiplex resources
— Context to discuss starvation, deadlock, livelock

* Four conditions for deadlocks
— Mutual exclusion
* Only one thread at a time can use a resource
— Hold and wait

« Thread holding at least one resource is waiting to acquire additional
resources held by other threads

— No preemption

* Resources are released only voluntarily by the threads
— Circular wait

« Jset{T,, ..., T,} of threads with a cyclic waiting pattern

70

Summary (2)

Techniques for addressing Deadlock
— Allow system to enter deadlock and then recover
— Ensure that system will never enter a deadlock

— Ignore the problem and pretend that deadlocks never occur in the
system

Deadlock prevention
— Prevent one of four necessary conditions for deadlock

Deadlock avoidance

— Assesses, for each allocation, whether it has the potential to lead
to deadlock

— Banker’s algorithm gives one way to assess this
Deadlock detection and recover

— Attempts to assess whether waiting graph can ever make progress
— Recover it not 71

Exercises:
7.7
7.11

72

