
Deadlocks: Part I
Prevention and Avoidance

Yi Shi
Fall 2018

Xi’an Jiaotong University

2

Review: Motivation for Monitors and
Condition Variables

• Semaphores are a huge step up, but:
– They are confusing because they are dual purpose:

• Both mutual exclusion and scheduling constraints
• Example: the fact that flipping of P’s in bounded buffer gives deadlock is

not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and condition variables

for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared data

– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

3

Review: Condition Variables

• Condition Variable: a queue of threads waiting for something
inside a critical section
– Key idea: allow sleeping inside critical section by atomically releasing

lock at time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(): Atomically release lock and go to sleep. Re-acquire lock

later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

Dining Philosophers and
the Deadlock Concept

5

Dining Philosopher’s
• Dijkstra

– A problem that was invented to illustrate a different aspect of
communication

– Our focus here is on the notion of sharing resources that only
one user at a time can own

• Philosophers eat/think

• Eating needs two forks

• Pick one fork at a time

Idea is to capture the concept of multiple processes
competing for limited resources

Coding our flawed solution?
Shared: semaphore fork[5];
Init: fork[i] = 1 for all i=0 .. 4

Philosopher i

do {
P(fork[i]);
P(fork[i+1]);

/* eat */

V(fork[i]);
V(fork[i+1]);

/* think */
} while(true);

Oops! Subject
to deadlock if
they all pick up
their “left” fork
simultaneously!

7

Goals for Today

• Discussion of Deadlocks

• Conditions for its occurrence

8

System Model
• There are non-shared computer resources

– Maybe more than one instance

– Printers, Semaphores, Tape drives, CPU

• Processes need access to these resources
– Acquire resource

• If resource is available, access is granted

• If not available, the process is blocked

– Use resource

– Release resource

• Undesirable scenario:
– Process A acquires resource 1, and is waiting for resource 2

– Process B acquires resource 2, and is waiting for resource 1

 Deadlock!

9

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
• Example, low-priority thread waiting for resources constantly in use

by high-priority threads
– Deadlock: circular waiting for resources

• Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock  Starvation but not vice versa
• Starvation can end (but doesn’t have to)
• Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

10

For example: Semaphores
semaphore: mutex1 = 1 /* protects resource 1 */

mutex2 = 1 /* protects resource 2 */

Process A code:
{

/* initial compute */
P(mutex1)
P(mutex2)

/* use both resources */

V(mutex2)
V(mutex1)

}

Process B code:
{

/* initial compute */
P(mutex2)
P(mutex1)

/* use both resources */

V(mutex2)
V(mutex1)

}

11

Deadlocks

• Definition: Deadlock exists among a set of processes if
– Every process is waiting for an event

– This event can be caused only by another process in the set
• Event is the acquire of release of another resource

One-lane bridge

12

Four Conditions for Deadlock

• Coffman et. al. 1971

• Necessary conditions for deadlock to exist:
– Mutual Exclusion

• At least one resource must be held is in non-sharable mode

– Hold and wait
• There exists a process holding a resource, and waiting for another

– No preemption
• Resources cannot be preempted

– Circular wait
• There exists a set of processes {P1, P2, … PN}, such that

– P1 is waiting for P2, P2 for P3, …. and PN for P1

All four conditions must hold for deadlock to occur

Real World Deadlocks?

• Truck A has to wait
for truck B to
move

• Not
deadlocked

Real World Deadlocks?

• Gridlock

Real World Deadlocks?

• Gridlock

Testing for deadlock

• Steps
– Collect “process state” and use it to build a graph

• Ask each process “are you waiting for anything”?

• Put an edge in the graph if so

– We need to do this in a single instant of time, not while things
might be changing

• Now need a way to test for cycles in our graph

Testing for deadlock

• One way to find cycles
– Look for a node with no outgoing edges

– Erase this node, and also erase any edges coming into it
• Idea: This was a process people might have been waiting for, but it

wasn’t waiting for anything else

– If (and only if) the graph has no cycles, we’ll eventually be able
to erase the whole graph!

• This is called a graph reduction algorithm

Graph reduction example

8

10

4

11

7

12

5

6

1

0

2

3

9

This graph can be “fully reduced”, hence there
was no deadlock at the time the graph was drawn.

Obviously, things could change later!

Graph reduction example

• This is an example of
an “irreducible” graph

• It contains a cycle
and represents a
deadlock, although
only some processes
are in the cycle

What about “resource” waits?

• When dining philosophers wait for one-another, they
don’t do so directly
– Erasmus doesn’t “wait” for Ptolemy

• Instead, they wait for resources
– Erasmus waits for a fork… which Ptolemy exclusively holds

• Can we extend our graphs to represent resource wait?

Resource-wait graphs

• We’ll use two kinds of nodes

• A process: P3 will be represented as circle:

• A resource: R7 will be represented as rectangle:
– A resource often has multiple identical

units, such as “blocks of memory”
– Represent these as circles in the box

• Arrow from a process to a resource: “I want
k units of this resource.” Arrow to a process:
this process holds k units of the resource
– P3 wants 2 units of R7

3

7

2

Resource-wait graphs

1

1

4

2

2

2

3

1

4

1

1

1

Reduction rules?

• Find a process that can have all its current
requests satisfied (e.g. the “available amount” of
any resource it wants is at least enough to
satisfy the request)

• Erase that process (in effect: grant the request,
let it run, and eventually it will release the
resource)

• Continue until we either erase all the process
nodes or have an irreducible component. In the
latter case we’ve identified a deadlock

This graph is reducible: The system
is not deadlocked

1

1

4

2

2

2

3

1

4

1

1

1

This graph is not reducible: The
system is deadlocked

1

1

4

2

2

21

4

1

1

5

3

Comments

• It isn’t common for systems to actually implement this
kind of test

• However, we’ll later use a version of the resource
reduction graph as part of an algorithm called the
“Banker’s Algorithm”

• Idea is to schedule the granting of resources so as to
avoid potentially deadlock states

Some questions you might ask

• Does the order in which we do the reduction matter?
– Answer: No. The reason is that if a node is a candidate for

reduction at step i, and we don’t pick it, it remains a candidate for
reduction at step i+1

– Thus eventually, no matter what order we do it in, we’ll reduce by
every node where reduction is feasible

Some questions you might ask

• If a system is deadlocked, could this go away?
– No, unless someone kills one of the threads or

something causes a process to release a resource

– Many real systems put time limits on “waiting”
precisely for this reason. When a process gets a
timeout exception, it gives up waiting and this also
can eliminate the deadlock

– But that process may be forced to terminate itself
because often, if a process can’t get what it needs,
there are no other options available!

Some questions you might ask

• Suppose a system isn’t deadlocked at time T.

• Can we assume it will still be free of deadlock at time
T+1?
– No, because the very next thing it might do is to run some

process that will request a resource…
… establishing a cyclic wait

… and causing deadlock

30

Dealing with Deadlocks

1. Reactive Approaches:
– Periodically check for evidence of deadlock

• For example, using a graph reduction algorithm

– Then need a way to recover
• Could blue screen and reboot the computer

• Could pick a “victim” and terminate that thread
– But this is only possible in certain kinds of applications

– Basically, thread needs a way to clean up if it gets terminated and has
to exit in a hurry!

31

Dealing with Deadlocks

2. Proactive Approaches:
– Deadlock Prevention

• Prevent one of the 4 necessary conditions from arising

• …. This will prevent deadlock from occurring

– Deadlock Avoidance
• Carefully allocate resources based on future knowledge

• Deadlocks are prevented

3. Ignore the problem
– Pretend deadlocks will never occur

– Ostrich approach… but surprisingly common!

Deadlock Prevention

33

Deadlock Prevention

• Can the OS prevent deadlocks?

• Prevention: Negate one of necessary conditions
– Mutual exclusion:

• Make resources sharable

• Not always possible (spooling?)

– Hold and wait
• Do not hold resources when waiting for another

 Request all resources before beginning execution

Processes do not know what all they will need

Starvation (if waiting on many popular resources)

Low utilization (Need resource only for a bit)

• Alternative: Release all resources before requesting anything new

– Still has the last two problems

34

Deadlock Prevention

• Prevention: Negate one of necessary conditions
– No preemption:

• Make resources preemptable (2 approaches)

• Preempt requesting processes’ resources if all not available

• Preempt resources of waiting processes to satisfy request

• Good when easy to save and restore state of resource

– CPU registers, memory virtualization

• Bad if in middle of critical section and resource is a lock

– Circular wait:
• Impose partial ordering on resources, request them in order

35

Breaking Circular Wait
• Order resources (lock1, lock2, …)

• Acquire resources in strictly increasing/decreasing order

• When requests to multiple resources of same order:
– Make the request a single operation

• Intuition: Cycle requires an edge from low to high, and
from high to low numbered node, or to same node

Ordering not always possible, low resource utilization

1

2

3

4
1

1 2

Deadlocks: Part II
Avoidance, Detection and

Recovery
Yi Shi

Fall 2018
Xi’an Jiaotong University

37

Review
• What is deadlocks
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

• Only one thread at a time can use a resource
– Hold and wait

• Thread holding at least one resource is waiting to acquire additional
resources held by other threads

– No preemption
• Resources are released only voluntarily by the threads

– Circular wait
•  set {T1, …, Tn} of threads with a cyclic waiting pattern

38

Review (2)
• Techniques for addressing Deadlock

– Allow system to enter deadlock and then recover

– Ensure that system will never enter a deadlock

– Ignore the problem and pretend that deadlocks never occur in the
system

• Deadlock prevention
– Prevent one of four necessary conditions for deadlock

39

Goals for today
• Deadlock avoidance

– Assesses, for each allocation, whether it has the potential to lead
to deadlock

– Banker’s algorithm gives one way to assess this

• Deadlock detection and recover
– Attempts to assess whether waiting graph can ever make progress

– Recover it not

Deadlock Avoidance

41

Deadlock Avoidance

• If we have future information
– Max resource requirement of each process before they execute

• Can we guarantee that deadlocks will never occur?

• Avoidance Approach:
– Before granting resource, check if state is safe

– If the state is safe  no deadlock!

42

Safe State

• A state is said to be safe, if it has a process sequence

{P1, P2,…, Pn}, such that for each Pi,

the resources that Pi can still request can be satisfied by
the currently available resources plus the resources held
by all Pj, where j < i

• State is safe because OS can definitely avoid deadlock
– by blocking any new requests until safe order is executed

• This avoids circular wait condition
– Process waits until safe state is guaranteed

43

Safe State Example
• Suppose there are 12 tape drives

max need current usage could ask for
P0 10 5 5
P1 4 2 2
P2 9 2 7

3 drives remain

• current state is safe because a safe sequence exists:
<p1,p0,p2>

p1 can complete with current resources
p0 can complete with current+p1
p2 can complete with current +p1+p0

• What if p2 requests 1 drive now?

44

Safe State Example
• Suppose p2 gets 1 drive

max need current usage could ask for
P0 10 5 5
P1 4 2 2
P2 9 3 6

2 drives remain

• no safe sequence exists:
p1 can complete with current resources
p0 and p2 can not complete with current+p1=2+2=4

• so p2’s request is denied
– then it must wait to avoid unsafe state.

45

Safe State Example

(One resource class only)
process holding max claims
A 4 6
B 4 11
C 2 7

unallocated: 2

safe sequence: A,C,B

If C should have a claim of 9 instead of 7,

there is no safe sequence.

need
2
7
5

46

Res. Alloc. Graph Algorithm
• Deadlock can be described using a resource allocation

graph, RAG

• Works if only one instance of each resource type

• Algorithm:
– Add a claim edge, PiRj if Pi can request Rj in the future

• Represented by a dashed line in graph

– A request PiRj can be granted only if:
• Adding an assignment edge Rj  Pi does not introduce cycles

– Since cycles imply unsafe state

R1

P1 P2

R2

R1

P1 P2

R2

47

Res. Alloc. Graph issues:

• Works if only one instance of each resource type

• A little complex to implement
– Would need to make it part of the system

– E.g. build a “resource management” library

48

Banker’s Algorithm

• Suppose we know the “worst case” resource needs of
processes in advance
– A bit like knowing the credit limit on your credit cards.

(This is why they call it the Banker’s Algorithm)

• Observation: Suppose we just give some process ALL
the resources it could need…
– Then it will execute to completion.

– After which it will give back the resources.

• Like a bank: If Visa just hands you all the money your
credit lines permit, at the end of the month, you’ll pay
your entire bill, right?

49

Banker’s Algorithm

• So…
– A process pre-declares its worst-case needs

– Then it asks for what it “really” needs, a little at a time

– The algorithm decides when to grant requests

• It delays a request unless:
– It can find a sequence of processes…

– …. such that it could grant their outstanding need…

– … so they would terminate…

– … letting it collect their resources…

– … and in this way it can execute everything to completion!

50

Banker’s Algorithm

• How will it really do this?
– The algorithm will just implement the graph reduction method for

resource graphs

– Graph reduction is “like” finding a sequence of processes that
can be executed to completion

• So: given a request
– Build a resource graph

– See if it is reducible, only grant request if so

– Else must delay the request until someone releases some
resources, at which point can test again

51

Banker’s Algorithm

• Decides whether to grant a resource request.
• Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i
max[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
need[1..n,1..m] max # resource Rj that Pi may still request

needi = maxi - allocationi

let request[i] be vector of # of resource Rj Process Pi wants

52

Basic Algorithm

1. If request[i] > need[i] then
error (asked for too much)

2. If request[i] > available[i] then
wait (can’t supply it now)

3. Resources are available to satisfy the request
Let’s assume that we satisfy the request. Then we would have:

available = available - request[i]
allocation[i] = allocation [i] + request[i]
need[i] = need [i] - request [i]

Now, check if this would leave us in a safe state:
if yes, grant the request,
if no, then leave the state as is and cause process to wait.

53

Safety Check

work[1..m] = available /* how many resources are available */
finish[1..n] = false (for all i) /* none finished yet */

Step 1: Find an i such that finish[i]=false and need[i] <= work
/* find a proc that can complete its request now */
if no such i exists, go to step 3 /* we’re done */

Step 2: Found an i:
finish [i] = true /* done with this process */
work= work + allocation [i]

/* assume this process were to finish, and its allocation back to the
available list */
go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not

54

Banker’s Algorithm: Example
Allocation Max Available Need
A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

this is a safe state: safe sequence <P1, P3, P4, P2, P0>

Suppose that P1 requests (1,0,2)

- (1,0,2)<(3,2,2) and (1,0,2)<(1,2,2)

- add it to P1’s allocation and subtract it from Available

55

Banker’s Algorithm: Example
Allocation Max Available Need
A B C A B C A B C A B C

P0 0 1 0 7 5 3 2 3 0 7 4 3
P1 3 0 2 3 2 2 0 2 0
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

This is still safe: safe seq <P1, P3, P4, P0, P2>, so request of p1 can be
granted

In this new state,
P4 requests (3,3,0)

not enough available resources , p4’s request will be denied
P0 requests (0,2,0)

let’s check resulting state

56

Banker’s Algorithm: Example
Allocation Max Available

A B C A B C A B C
P0 0 3 0 7 5 3 2 1 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

This is unsafe state (why?)

So P0’s request will be denied

Problems with Banker’s Algorithm?

Deadlock Detection & Recovery

58

Deadlock Detection & Recovery

• If neither avoidance or prevention is implemented,
deadlocks can (and will) occur.

• Coping with this requires:
– Detection: finding out if deadlock has occurred

• Keep track of resource allocation (who has what)

• Keep track of pending requests (who is waiting for what)

– Recovery: untangle the mess.

• Expensive to detect, as well as recover

59

Using the RAG Algorithm to detect
deadlocks

• Suppose there is only one instance of each resource
• Example 1: Is this a deadlock?

– P1 has R2 and R3, and is requesting R1
– P2 has R4 and is requesting R3
– P3 has R1 and is requesting R4

• Example 2: Is this a deadlock?
– P1 has R2, and is requesting R1 and R3
– P2 has R4 and is requesting R3
– P3 has R1 and is requesting R4

• Use a wait-for graph:
– Collapse resources
– An edge PiPk exists only if RAG has PiRj & Rj  Pk

– Cycle in wait-for graph  deadlock!

P1

R2 R3

P2

P3

R4

R1

60

Resource-Allocation Graph and
Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

61

2nd Detection Algorithm

• What if there are multiple resource instances?

• Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i
request[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
finish[1..n] true if Pi’s request can be satisfied

let request[i] be vector of # instances of each resource Pi wants

62

2nd Detection Algorithm

1. work[]=available[]
for all i < n, if allocation[i]  0

then finish[i]=false else finish[i]=true
2. find an index i such that:

finish[i]=false;
request[i]<=work

if no such i exists, go to 4.
3. work=work+allocation[i]

finish[i] = true, go to 2
4. if finish[i] = false for some i,

then system is deadlocked with Pi in deadlock

63

Example

Finished = {F, F, F, F};
Work = Available = (0, 0, 1);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3 0 0 1

P4 1 1 1

Allocation Request

64

Example

Finished = {F, F, T, F};
Work = (1, 1, 1);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3

P4 1 1 1

Allocation Request

65

Example

Finished = {F, F, T, T};
Work = (2, 2, 2);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3

P4

Allocation Request

66

Example

Finished = {F, T, T, T};
Work = (4, 3, 4);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2

P3

P4

Allocation Request

67

Example

Finished = {T, T, T, T};
Work = (5, 4, 5);

R1 R2 R3

P1

P2

P3

P4

R1 R2 R3

P1

P2

P3

P4

Allocation Request

68

When to run Detection Algorithm?

• For every request that cannot be immediately satisfied?

• For every resource request?

• Once every hour?

• When CPU utilization drops below 40%?

69

Deadlock Recovery

• Killing one/all deadlocked processes
– Crude, but effective

– Keep killing processes, until deadlock broken

– Repeat the entire computation

• Preempt resource/processes until deadlock broken
– Selecting a victim (# resources held, how long executed)

– Rollback (partial or total)

– Starvation (prevent a process from being executed)

70

Summary
• Dining Philosophers Problem

– Highlights need to multiplex resources
– Context to discuss starvation, deadlock, livelock

• Four conditions for deadlocks
– Mutual exclusion

• Only one thread at a time can use a resource
– Hold and wait

• Thread holding at least one resource is waiting to acquire additional
resources held by other threads

– No preemption
• Resources are released only voluntarily by the threads

– Circular wait
•  set {T1, …, Tn} of threads with a cyclic waiting pattern

71

Summary (2)
• Techniques for addressing Deadlock

– Allow system to enter deadlock and then recover

– Ensure that system will never enter a deadlock

– Ignore the problem and pretend that deadlocks never occur in the
system

• Deadlock prevention
– Prevent one of four necessary conditions for deadlock

• Deadlock avoidance
– Assesses, for each allocation, whether it has the potential to lead

to deadlock

– Banker’s algorithm gives one way to assess this

• Deadlock detection and recover
– Attempts to assess whether waiting graph can ever make progress

– Recover it not

Exercises:

7.7

7.11

72

