
Deadlocks: Part I
Prevention and Avoidance

Yi Shi
Fall 2018

Xi’an Jiaotong University

2

Review: Motivation for Monitors and
Condition Variables

• Semaphores are a huge step up, but:
– They are confusing because they are dual purpose:

• Both mutual exclusion and scheduling constraints
• Example: the fact that flipping of P’s in bounded buffer gives deadlock is

not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and condition variables

for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared data

– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

3

Review: Condition Variables

• Condition Variable: a queue of threads waiting for something
inside a critical section
– Key idea: allow sleeping inside critical section by atomically releasing

lock at time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(): Atomically release lock and go to sleep. Re-acquire lock

later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

Dining Philosophers and
the Deadlock Concept

5

Dining Philosopher’s
• Dijkstra

– A problem that was invented to illustrate a different aspect of
communication

– Our focus here is on the notion of sharing resources that only
one user at a time can own

• Philosophers eat/think

• Eating needs two forks

• Pick one fork at a time

Idea is to capture the concept of multiple processes
competing for limited resources

Coding our flawed solution?
Shared: semaphore fork[5];
Init: fork[i] = 1 for all i=0 .. 4

Philosopher i

do {
P(fork[i]);
P(fork[i+1]);

/* eat */

V(fork[i]);
V(fork[i+1]);

/* think */
} while(true);

Oops! Subject
to deadlock if
they all pick up
their “left” fork
simultaneously!

7

Goals for Today

• Discussion of Deadlocks

• Conditions for its occurrence

8

System Model
• There are non-shared computer resources

– Maybe more than one instance

– Printers, Semaphores, Tape drives, CPU

• Processes need access to these resources
– Acquire resource

• If resource is available, access is granted

• If not available, the process is blocked

– Use resource

– Release resource

• Undesirable scenario:
– Process A acquires resource 1, and is waiting for resource 2

– Process B acquires resource 2, and is waiting for resource 1

 Deadlock!

9

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
• Example, low-priority thread waiting for resources constantly in use

by high-priority threads
– Deadlock: circular waiting for resources

• Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock Starvation but not vice versa
• Starvation can end (but doesn’t have to)
• Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

10

For example: Semaphores
semaphore: mutex1 = 1 /* protects resource 1 */

mutex2 = 1 /* protects resource 2 */

Process A code:
{

/* initial compute */
P(mutex1)
P(mutex2)

/* use both resources */

V(mutex2)
V(mutex1)

}

Process B code:
{

/* initial compute */
P(mutex2)
P(mutex1)

/* use both resources */

V(mutex2)
V(mutex1)

}

11

Deadlocks

• Definition: Deadlock exists among a set of processes if
– Every process is waiting for an event

– This event can be caused only by another process in the set
• Event is the acquire of release of another resource

One-lane bridge

12

Four Conditions for Deadlock

• Coffman et. al. 1971

• Necessary conditions for deadlock to exist:
– Mutual Exclusion

• At least one resource must be held is in non-sharable mode

– Hold and wait
• There exists a process holding a resource, and waiting for another

– No preemption
• Resources cannot be preempted

– Circular wait
• There exists a set of processes {P1, P2, … PN}, such that

– P1 is waiting for P2, P2 for P3, …. and PN for P1

All four conditions must hold for deadlock to occur

Real World Deadlocks?

• Truck A has to wait
for truck B to
move

• Not
deadlocked

Real World Deadlocks?

• Gridlock

Real World Deadlocks?

• Gridlock

Testing for deadlock

• Steps
– Collect “process state” and use it to build a graph

• Ask each process “are you waiting for anything”?

• Put an edge in the graph if so

– We need to do this in a single instant of time, not while things
might be changing

• Now need a way to test for cycles in our graph

Testing for deadlock

• One way to find cycles
– Look for a node with no outgoing edges

– Erase this node, and also erase any edges coming into it
• Idea: This was a process people might have been waiting for, but it

wasn’t waiting for anything else

– If (and only if) the graph has no cycles, we’ll eventually be able
to erase the whole graph!

• This is called a graph reduction algorithm

Graph reduction example

8

10

4

11

7

12

5

6

1

0

2

3

9

This graph can be “fully reduced”, hence there
was no deadlock at the time the graph was drawn.

Obviously, things could change later!

Graph reduction example

• This is an example of
an “irreducible” graph

• It contains a cycle
and represents a
deadlock, although
only some processes
are in the cycle

What about “resource” waits?

• When dining philosophers wait for one-another, they
don’t do so directly
– Erasmus doesn’t “wait” for Ptolemy

• Instead, they wait for resources
– Erasmus waits for a fork… which Ptolemy exclusively holds

• Can we extend our graphs to represent resource wait?

Resource-wait graphs

• We’ll use two kinds of nodes

• A process: P3 will be represented as circle:

• A resource: R7 will be represented as rectangle:
– A resource often has multiple identical

units, such as “blocks of memory”
– Represent these as circles in the box

• Arrow from a process to a resource: “I want
k units of this resource.” Arrow to a process:
this process holds k units of the resource
– P3 wants 2 units of R7

3

7

2

Resource-wait graphs

1

1

4

2

2

2

3

1

4

1

1

1

Reduction rules?

• Find a process that can have all its current
requests satisfied (e.g. the “available amount” of
any resource it wants is at least enough to
satisfy the request)

• Erase that process (in effect: grant the request,
let it run, and eventually it will release the
resource)

• Continue until we either erase all the process
nodes or have an irreducible component. In the
latter case we’ve identified a deadlock

This graph is reducible: The system
is not deadlocked

1

1

4

2

2

2

3

1

4

1

1

1

This graph is not reducible: The
system is deadlocked

1

1

4

2

2

21

4

1

1

5

3

Comments

• It isn’t common for systems to actually implement this
kind of test

• However, we’ll later use a version of the resource
reduction graph as part of an algorithm called the
“Banker’s Algorithm”

• Idea is to schedule the granting of resources so as to
avoid potentially deadlock states

Some questions you might ask

• Does the order in which we do the reduction matter?
– Answer: No. The reason is that if a node is a candidate for

reduction at step i, and we don’t pick it, it remains a candidate for
reduction at step i+1

– Thus eventually, no matter what order we do it in, we’ll reduce by
every node where reduction is feasible

Some questions you might ask

• If a system is deadlocked, could this go away?
– No, unless someone kills one of the threads or

something causes a process to release a resource

– Many real systems put time limits on “waiting”
precisely for this reason. When a process gets a
timeout exception, it gives up waiting and this also
can eliminate the deadlock

– But that process may be forced to terminate itself
because often, if a process can’t get what it needs,
there are no other options available!

Some questions you might ask

• Suppose a system isn’t deadlocked at time T.

• Can we assume it will still be free of deadlock at time
T+1?
– No, because the very next thing it might do is to run some

process that will request a resource…
… establishing a cyclic wait

… and causing deadlock

30

Dealing with Deadlocks

1. Reactive Approaches:
– Periodically check for evidence of deadlock

• For example, using a graph reduction algorithm

– Then need a way to recover
• Could blue screen and reboot the computer

• Could pick a “victim” and terminate that thread
– But this is only possible in certain kinds of applications

– Basically, thread needs a way to clean up if it gets terminated and has
to exit in a hurry!

31

Dealing with Deadlocks

2. Proactive Approaches:
– Deadlock Prevention

• Prevent one of the 4 necessary conditions from arising

• …. This will prevent deadlock from occurring

– Deadlock Avoidance
• Carefully allocate resources based on future knowledge

• Deadlocks are prevented

3. Ignore the problem
– Pretend deadlocks will never occur

– Ostrich approach… but surprisingly common!

Deadlock Prevention

33

Deadlock Prevention

• Can the OS prevent deadlocks?

• Prevention: Negate one of necessary conditions
– Mutual exclusion:

• Make resources sharable

• Not always possible (spooling?)

– Hold and wait
• Do not hold resources when waiting for another

 Request all resources before beginning execution

Processes do not know what all they will need

Starvation (if waiting on many popular resources)

Low utilization (Need resource only for a bit)

• Alternative: Release all resources before requesting anything new

– Still has the last two problems

34

Deadlock Prevention

• Prevention: Negate one of necessary conditions
– No preemption:

• Make resources preemptable (2 approaches)

• Preempt requesting processes’ resources if all not available

• Preempt resources of waiting processes to satisfy request

• Good when easy to save and restore state of resource

– CPU registers, memory virtualization

• Bad if in middle of critical section and resource is a lock

– Circular wait:
• Impose partial ordering on resources, request them in order

35

Breaking Circular Wait
• Order resources (lock1, lock2, …)

• Acquire resources in strictly increasing/decreasing order

• When requests to multiple resources of same order:
– Make the request a single operation

• Intuition: Cycle requires an edge from low to high, and
from high to low numbered node, or to same node

Ordering not always possible, low resource utilization

1

2

3

4
1

1 2

Deadlocks: Part II
Avoidance, Detection and

Recovery
Yi Shi

Fall 2018
Xi’an Jiaotong University

37

Review
• What is deadlocks
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

• Only one thread at a time can use a resource
– Hold and wait

• Thread holding at least one resource is waiting to acquire additional
resources held by other threads

– No preemption
• Resources are released only voluntarily by the threads

– Circular wait
• set {T1, …, Tn} of threads with a cyclic waiting pattern

38

Review (2)
• Techniques for addressing Deadlock

– Allow system to enter deadlock and then recover

– Ensure that system will never enter a deadlock

– Ignore the problem and pretend that deadlocks never occur in the
system

• Deadlock prevention
– Prevent one of four necessary conditions for deadlock

39

Goals for today
• Deadlock avoidance

– Assesses, for each allocation, whether it has the potential to lead
to deadlock

– Banker’s algorithm gives one way to assess this

• Deadlock detection and recover
– Attempts to assess whether waiting graph can ever make progress

– Recover it not

Deadlock Avoidance

41

Deadlock Avoidance

• If we have future information
– Max resource requirement of each process before they execute

• Can we guarantee that deadlocks will never occur?

• Avoidance Approach:
– Before granting resource, check if state is safe

– If the state is safe no deadlock!

42

Safe State

• A state is said to be safe, if it has a process sequence

{P1, P2,…, Pn}, such that for each Pi,

the resources that Pi can still request can be satisfied by
the currently available resources plus the resources held
by all Pj, where j < i

• State is safe because OS can definitely avoid deadlock
– by blocking any new requests until safe order is executed

• This avoids circular wait condition
– Process waits until safe state is guaranteed

43

Safe State Example
• Suppose there are 12 tape drives

max need current usage could ask for
P0 10 5 5
P1 4 2 2
P2 9 2 7

3 drives remain

• current state is safe because a safe sequence exists:
<p1,p0,p2>

p1 can complete with current resources
p0 can complete with current+p1
p2 can complete with current +p1+p0

• What if p2 requests 1 drive now?

44

Safe State Example
• Suppose p2 gets 1 drive

max need current usage could ask for
P0 10 5 5
P1 4 2 2
P2 9 3 6

2 drives remain

• no safe sequence exists:
p1 can complete with current resources
p0 and p2 can not complete with current+p1=2+2=4

• so p2’s request is denied
– then it must wait to avoid unsafe state.

45

Safe State Example

(One resource class only)
process holding max claims
A 4 6
B 4 11
C 2 7

unallocated: 2

safe sequence: A,C,B

If C should have a claim of 9 instead of 7,

there is no safe sequence.

need
2
7
5

46

Res. Alloc. Graph Algorithm
• Deadlock can be described using a resource allocation

graph, RAG

• Works if only one instance of each resource type

• Algorithm:
– Add a claim edge, PiRj if Pi can request Rj in the future

• Represented by a dashed line in graph

– A request PiRj can be granted only if:
• Adding an assignment edge Rj Pi does not introduce cycles

– Since cycles imply unsafe state

R1

P1 P2

R2

R1

P1 P2

R2

47

Res. Alloc. Graph issues:

• Works if only one instance of each resource type

• A little complex to implement
– Would need to make it part of the system

– E.g. build a “resource management” library

48

Banker’s Algorithm

• Suppose we know the “worst case” resource needs of
processes in advance
– A bit like knowing the credit limit on your credit cards.

(This is why they call it the Banker’s Algorithm)

• Observation: Suppose we just give some process ALL
the resources it could need…
– Then it will execute to completion.

– After which it will give back the resources.

• Like a bank: If Visa just hands you all the money your
credit lines permit, at the end of the month, you’ll pay
your entire bill, right?

49

Banker’s Algorithm

• So…
– A process pre-declares its worst-case needs

– Then it asks for what it “really” needs, a little at a time

– The algorithm decides when to grant requests

• It delays a request unless:
– It can find a sequence of processes…

– …. such that it could grant their outstanding need…

– … so they would terminate…

– … letting it collect their resources…

– … and in this way it can execute everything to completion!

50

Banker’s Algorithm

• How will it really do this?
– The algorithm will just implement the graph reduction method for

resource graphs

– Graph reduction is “like” finding a sequence of processes that
can be executed to completion

• So: given a request
– Build a resource graph

– See if it is reducible, only grant request if so

– Else must delay the request until someone releases some
resources, at which point can test again

51

Banker’s Algorithm

• Decides whether to grant a resource request.
• Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i
max[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
need[1..n,1..m] max # resource Rj that Pi may still request

needi = maxi - allocationi

let request[i] be vector of # of resource Rj Process Pi wants

52

Basic Algorithm

1. If request[i] > need[i] then
error (asked for too much)

2. If request[i] > available[i] then
wait (can’t supply it now)

3. Resources are available to satisfy the request
Let’s assume that we satisfy the request. Then we would have:

available = available - request[i]
allocation[i] = allocation [i] + request[i]
need[i] = need [i] - request [i]

Now, check if this would leave us in a safe state:
if yes, grant the request,
if no, then leave the state as is and cause process to wait.

53

Safety Check

work[1..m] = available /* how many resources are available */
finish[1..n] = false (for all i) /* none finished yet */

Step 1: Find an i such that finish[i]=false and need[i] <= work
/* find a proc that can complete its request now */
if no such i exists, go to step 3 /* we’re done */

Step 2: Found an i:
finish [i] = true /* done with this process */
work= work + allocation [i]

/* assume this process were to finish, and its allocation back to the
available list */
go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not

54

Banker’s Algorithm: Example
Allocation Max Available Need
A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

this is a safe state: safe sequence <P1, P3, P4, P2, P0>

Suppose that P1 requests (1,0,2)

- (1,0,2)<(3,2,2) and (1,0,2)<(1,2,2)

- add it to P1’s allocation and subtract it from Available

55

Banker’s Algorithm: Example
Allocation Max Available Need
A B C A B C A B C A B C

P0 0 1 0 7 5 3 2 3 0 7 4 3
P1 3 0 2 3 2 2 0 2 0
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

This is still safe: safe seq <P1, P3, P4, P0, P2>, so request of p1 can be
granted

In this new state,
P4 requests (3,3,0)

not enough available resources , p4’s request will be denied
P0 requests (0,2,0)

let’s check resulting state

56

Banker’s Algorithm: Example
Allocation Max Available

A B C A B C A B C
P0 0 3 0 7 5 3 2 1 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

This is unsafe state (why?)

So P0’s request will be denied

Problems with Banker’s Algorithm?

Deadlock Detection & Recovery

58

Deadlock Detection & Recovery

• If neither avoidance or prevention is implemented,
deadlocks can (and will) occur.

• Coping with this requires:
– Detection: finding out if deadlock has occurred

• Keep track of resource allocation (who has what)

• Keep track of pending requests (who is waiting for what)

– Recovery: untangle the mess.

• Expensive to detect, as well as recover

59

Using the RAG Algorithm to detect
deadlocks

• Suppose there is only one instance of each resource
• Example 1: Is this a deadlock?

– P1 has R2 and R3, and is requesting R1
– P2 has R4 and is requesting R3
– P3 has R1 and is requesting R4

• Example 2: Is this a deadlock?
– P1 has R2, and is requesting R1 and R3
– P2 has R4 and is requesting R3
– P3 has R1 and is requesting R4

• Use a wait-for graph:
– Collapse resources
– An edge PiPk exists only if RAG has PiRj & Rj Pk

– Cycle in wait-for graph deadlock!

P1

R2 R3

P2

P3

R4

R1

60

Resource-Allocation Graph and
Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

61

2nd Detection Algorithm

• What if there are multiple resource instances?

• Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i
request[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
finish[1..n] true if Pi’s request can be satisfied

let request[i] be vector of # instances of each resource Pi wants

62

2nd Detection Algorithm

1. work[]=available[]
for all i < n, if allocation[i] 0

then finish[i]=false else finish[i]=true
2. find an index i such that:

finish[i]=false;
request[i]<=work

if no such i exists, go to 4.
3. work=work+allocation[i]

finish[i] = true, go to 2
4. if finish[i] = false for some i,

then system is deadlocked with Pi in deadlock

63

Example

Finished = {F, F, F, F};
Work = Available = (0, 0, 1);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3 0 0 1

P4 1 1 1

Allocation Request

64

Example

Finished = {F, F, T, F};
Work = (1, 1, 1);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3

P4 1 1 1

Allocation Request

65

Example

Finished = {F, F, T, T};
Work = (2, 2, 2);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2 2 2 1

P3

P4

Allocation Request

66

Example

Finished = {F, T, T, T};
Work = (4, 3, 4);

R1 R2 R3

P1 1 1 1

P2 2 1 2

P3 1 1 0

P4 1 1 1

R1 R2 R3

P1 3 2 1

P2

P3

P4

Allocation Request

67

Example

Finished = {T, T, T, T};
Work = (5, 4, 5);

R1 R2 R3

P1

P2

P3

P4

R1 R2 R3

P1

P2

P3

P4

Allocation Request

68

When to run Detection Algorithm?

• For every request that cannot be immediately satisfied?

• For every resource request?

• Once every hour?

• When CPU utilization drops below 40%?

69

Deadlock Recovery

• Killing one/all deadlocked processes
– Crude, but effective

– Keep killing processes, until deadlock broken

– Repeat the entire computation

• Preempt resource/processes until deadlock broken
– Selecting a victim (# resources held, how long executed)

– Rollback (partial or total)

– Starvation (prevent a process from being executed)

70

Summary
• Dining Philosophers Problem

– Highlights need to multiplex resources
– Context to discuss starvation, deadlock, livelock

• Four conditions for deadlocks
– Mutual exclusion

• Only one thread at a time can use a resource
– Hold and wait

• Thread holding at least one resource is waiting to acquire additional
resources held by other threads

– No preemption
• Resources are released only voluntarily by the threads

– Circular wait
• set {T1, …, Tn} of threads with a cyclic waiting pattern

71

Summary (2)
• Techniques for addressing Deadlock

– Allow system to enter deadlock and then recover

– Ensure that system will never enter a deadlock

– Ignore the problem and pretend that deadlocks never occur in the
system

• Deadlock prevention
– Prevent one of four necessary conditions for deadlock

• Deadlock avoidance
– Assesses, for each allocation, whether it has the potential to lead

to deadlock

– Banker’s algorithm gives one way to assess this

• Deadlock detection and recover
– Attempts to assess whether waiting graph can ever make progress

– Recover it not

Exercises:

7.7

7.11

72

