发表文章

2019

 

25. A. Xu*; L. Shi; H.D. Xi.  Lattice Boltzmann simulations of three-dimensional thermal convective flows at hgih Rayleigh number. Int. J. Heat Mass Transf. 2019, 140, 359-370.

24. L. Shi; A. Xu; D. Pan; T.S. Zhao*. Aqueous proton-selective conduction across two-dimensional graphyneNat. Commun2019, 10, 1165.

23.A. Xu; L. Shi; L. Zeng; T.S. Zhao*First-principle investigations of nitrogen-, boron-, phosphorus-doped graphite electrodes for vanadium redox flow batteries. Electrochim. Acta 2019, 300, 389-395. 

 

2018

 

22. L. Shi; A. Xu; T.S. Zhao*. Three-dimensional carbon-honeycomb as nano-porous lithium and sodium deposition scaffloldJ. Phys. Chem. C 2018122(37), 21262-21268.

21. A. Xu; T.S. Zhao*; L. Shi; J.B. Xu. Lattice Boltzmann simulation of mass transfer coefficients for chemically reactive flows in porous media. J. Heat Transf.-Trans. ASME 2018140(5), 052601.

20. A. Xu; L. Shi; T.S. Zhao*. Lattice Boltzmann simulation of shear viscosity of suspensions contaning porous particlesInt. J. Heat Mass Transf. 2018166, 969-976.

19. A. Xu; L. Shi; T.S. Zhao*. Thermal effects on the sedimentation behavior of elliptical particles. Int. J. Heat Mass Transf. 2018126, 753-764.

18. G. Zhao#; L. Shi#; J.B. Xu; X.H. Yan; T.S. Zhao*. Role of phosphorus in nitrogen, phosphorus dual-doped ordered mesoporous carbon electrocatalyst for oxygen reduction reaction in alkaline mediaInt. J. Hydrogen Energy 201843(3), 1470-1478. (# Co-first author)

 

2017

 

17. X.H. Yan; P. Gao; G. Zhao; L. Shi; J.B. Xu; T.S. Zhao*. Transport of highly concentrated fuel in direct methanol fuel cellsAppl. Therm. Eng. 2017126, 290-295.

16. P. Tan; H.R. Jiang; X.B. Zhu; L. An; C.Y. Jung; M.C. Wu; L. Shi; W. Shyy; T.S. Zhao*. Advances and challenges in lithium-air batteriesAppl. Energy 2017204, 780-806.

15. L. Shi; A. Xu; G.H. Chen; T.S. Zhao*. Theoretical understanding of mechanism of proton exchange membranes made of 2D crystals with ultrahigh selectivityJ. Phys. Chem. Lett. 2017, 8(18), 4354-4361.

14. A. Xu; L. Shi; T.S. Zhao*. Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Int. J. Heat Mass Transf. 2017, 109, 577-588.

13. L. Shi; T.S. Zhao*. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 20175(8), 3735-3758. (ESI Highly Cited Paper)

12. L. Shi; A. Xu; T.S. Zhao*. First-principle investigations of the working mechanism of 2D h-BN as an interfacial layer for the anode of lithium metal batteriesACS Appl. Mater. Interfaces 20179(2), 1987-1994.

 

2016

 

11. A. Xu; T.S. Zhao*; L. Shi; X.H. Yan. Three-dimensional lattice Boltzmann simulation of suspensions containing both micro- and nanoparticlesInt. J. Heat Fluid Flow 201663, 560-567. 

10. L. Shi; T.S. Zhao*; A. Xu; Z.H. Wei. Unraveling the catalytic mechanism of rutile RuO2 for the oxygen reduction reaction and oxygen evolution reaction in Li-O2 batteries. ACS Catal20166(9), 6285-6293.

9. X.H. Yan; T.S. Zhao*; L. An; G. Zhao; L. ShiA direct methanol-hydrogen peroxide fuel cell with a Prussian Blue cathode. Int. J. Hydrogen. Energy 201641(9), 5135-5140.

8. P. Tan#; L. Shi#; W. Shyy; T.S. Zhao*. Morphology of the discharge product in non-aqueous lithium-oxygen batteries: furrowed toroid particles correspond to a lower charge voltageEnergy Technol20164(3), 393-400. (Co-first author)

7. H.R. Jiang; T.S. Zhao*; L. Shi; P. Tan; L. An. First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalyst in nonaqueous Li-O2 batteries. J. Phys. Chem. C 2016120(12), 6612-6618.

6. L. Shi; A. Xu; T.S. Zhao*. RuO2 monolayer: A promising bifunctional catalytic material for the nonaqueous lithium-oxygen batteries. J. Phys. Chem. C 2016120(12), 6356-6362.

5. L. Shi; T.S. Zhao*; A. Xu; J.B. Xu. Ab initio prediction of a silicene and graphene heterostructure as an anode materail for Li- and Na-ion batteries. J. Mater. Chem. A 20164(42), 16377-16382.

4. L. Shi; T.S. Zhao*; A. Xu; J.B. Xu. Ab initio prediction of borophene as an extraodinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries. Sci. Bull201661(14), 1138-1144. (Cover Page) Highlighted by EurekAlert!

 

 2015

 

3. A. Xu; T.S. Zhao*; L. An; L. ShiA three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. Int. J. Heat Fluid Flow 201556, 261-271.

2. L. Shi; A. Xu; T.S. Zhao*. Formation of Li3O4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage. Phys. Chem. Chem. Phys. 201517(44), 29859-29866.

1. L. Shi; T.S. Zhao*. Why the charge overpotential in non-aqueous Li-O2 batteries is so high and exhibits different rising trends?. Sci. bull. 201560(2), 281-282.

 

版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 IPhone版本下载 IPhone版本下载    Android版本下载 Android版本下载
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Fifefox 以上