科研项目
项目编号 项目名称 项目来源 起讫时间 承担角色 项目类别
51876169 纳米孔隙中水驱油两相渗吸机理与动力学特性 国家自然科学基金项目2019-1~负责人纵向项目
3644 离子对纳米孔隙中水驱油两相渗吸的调控机理研究 中国博士后科学基金面上项目2018-7~负责人纵向项目
J2018** 基于石墨烯薄膜的海水淡化技术研究 719所外协项目2018-12~负责人横向项目
20170951 原油特征组分的分子动力学模拟研究 中国石油勘探开发研究院外协项目2017-6~2017-11负责人横向项目
51506166 岩石壁面亲油性形成及润湿性反转的分子机制 国家自然科学基金项目2016-1~2018-12负责人纵向项目
2016T90915 多孔石墨烯的分子渗透机制及其在天然气提取氦中的应用 中国博士后特别资助项目2015-6~2017-5负责人纵向项目
xjtu15 多孔石墨烯气体分离膜在天然气处理中的应用研究 西安交通大学自由探索与自主创新类项目2015-1~2017-12负责人纵向项目
2015M580846 纳米颗粒对油-固界面特性的调控机理研究 中国博士后面上资助项目2015-1~2016-7负责人纵向项目
共有8条记录 共有1页面 每页面显示 条记录 页索引: 1 链接到第 页面
书籍章节

 [1] Sun Chengzhen, Bai Bofeng*. Chemically Derived Graphene for Water Purification and Gas Separation. RSC Nanoscience and Nanotechnology Series, Book title: Chemically Derived Graphene:Functionalization methods, Properties, and Applications, Edited by Jintao Zhang, 2018.

英文文章

[29] Zhixiang,Zhao, Runfeng Zhou, Chengzhen Sun*. Molecular Dynamics Study of Water Diffusivity in Graphene Nanochannels. International Journal of Thermophysics, 2020, 41, 79. 
[28] Zhixiang Zhao, Chengzhen Sun*, Runfeng Zhou. Thermal conductivity of confined-water in graphene nanochannels. International Journal of Heat and Mass Transfer, 2020, 152: 119502.
[27] Boyao Wen, Chengzhen Sun, Wenxiu Zheng, Bofeng Bai*, Eric Lichtfouse. Evidence for water ridges at oil-water interfaces: implications for ion transport. Soft matter, 2020, 16, 826-832.
[26] Wenxiu Zheng, Chengzhen Sun, Boyao Wen, Bofeng Bai* and Eric Lichtfouse. Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems. Polymers 2019, 11, 2081.
[25] Sun Chengzhen*, Zhu Shaohua, Liu Maochang, Shen Shaohua, Bai Bofeng. Selective Molecular Sieving Through a Large Graphene Nanopore with Surface Charges. The Journal of Physical Chemistry Letters, 2019, 10, 7188-7194
                                                                                          
[24] Chengzhen Sun*, Mei Liu, Bofeng Bai*. Molecular simulations on graphene-based membranes Carbon, 153, 2019, 481-494
[23] Chengzhen Sun*, Xiuzhi Zheng, Bofeng Bai*. Hydrogen purification using nanoporous graphene membranes and its economic analysis. Chemical Engineering Science, 208, 2019, 115141
[22] Wenxiu Zheng, Chengzhen Sun, Boyao Wen and Bofeng Bai*. Moving mechanisms of the three-phase contact line in a water–decane–silica system. RSC Adv., 2019, 9, 3092-3101
[21] Boyao Wen, Chengzhen Sun, Bofeng Bai*. Nanoparticle-induced ion-sensitive reduction in decane-water interfacial tension. Phys. Chem. Chem. Phys., 2018, 20, 22796-22804

[20] Shijing Xu, Jingyao Wang, Jiazhong Wu, Qingjie Liu, Chengzhen Sun*, Bofeng Bai. Oil contact angles in a water-decane-silicon dioxide system: effects of surface charge. Nanoscale Research Letters, 2018, 13:108.

[19] Sun Chengzhen, Bai Bofeng*. Improved CO2/CH4 separation performance in negatively charged nanoporous graphene membranes. Journal of Physical Chemistry C, 2018, 122: 6178-6185. 

 

[18] Sun Chengzhen, Bai Bofeng*. Selective permeation of gas molecules through a two-dimensional graphene nanopore, Acta Physico-Chimica Sinca, 2018, 34: 1136-1143.

 

[17] Sun Chengzhen, Bai Bofeng*, Lu Wenqiang. Thermal transport in sheared nanoparticle suspensions: effect of temperature, Heat Transfer Engineering, 2019, 40: 1383-1392. 

[16] Zheng Wenxiu, Sun Chengzhen, Bai Bofeng*. Molecular Dynamics Study on the Effect of Surface Hydroxyl Groups on Three-Phase Wettability in Oil-Water-Graphite Systems. Polymers, 2017, 20734360.

[15] Boyao Wen, Chengzhen Sun, Bofeng Bai*, Elizaveta Ya. Gatapova and Oleg A. Kabov. Ionic hydration-induced evolution of decane–water interfacial tension. Phys. Chem. Chem. Phys., 2017, 19, 14606-14614.

[14] Sun Chengzhen, Bai Bofeng*. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation, Science Bulletin, 2017, 62: 554-562.

[13] Sun Chengzhen, Bai Bofeng*. Fast mass transport across two-dimensional graphene nanopores: nonlinear pressure-dependent gas permeation flux, Chemical Engineering Science, 2017, 165: 186-191.

[12] Sun Chengzhen, Bai Bofeng*. Diffusion of gas molecules on multilayer graphene surfaces: dependence on the number of graphene layers, Applied Thermal Engineering, 2017, 116: 724-730.(ESI高引论文

[11] Sun Chengzhen, Bai Bofeng*. Gas diffusion on graphene surfaces, Physical Chemistry Chemical Physics, 2017, 19: 3894-3902.(ESI高引论文

[10] Sun Chengzhen, Wen Boyao, Bai Bofeng*. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chemical Engineering Science, 2015, 138: 616-621.

[9] Sun Chengzhen, Wen Boyao, Bai Bofeng*. Recent advances in nanoporous graphene membrane for gas separation and water purification. Science Bulletin, 2015, 60: 1807-1823.

[8] Wen Boyao, Sun Chengzhen*, Bai Bofeng*. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes. Physical Chemistry Chemical Physics, 2015, 17: 23619-23626.

[7] Chengzhen Sun, Michael S. H. Boutilier, Harold Au, Pietro Poesio, Bofeng Bai, Rohit Karnik, Nicolas G. Hadjiconstantinou*. Mechanisms of Molecular Permeation through Nanoporous Graphene Membranes. Langmuir 30 (2014) 675-682. (引用突破100次

[6] Chengzhen Sun, Wenqiang Lu, Bofeng Bai*. Novel flow behaviors induced by a solid particle in nanochannels: Poiseuille and Couette. Chinese Science Bulletin 59 (2014):2478–2485.

[5] Michael S. H. Boutilier, Chengzhen Sun, Sean C. O’Hern, Harold Au, Nicolas Hadjiconstantinou, Rohit Karnik*. Implications of Permeation through Intrinsic Defects in Graphene on the Design of Defect-Tolerant Membranes for Gas Separation. Acs Nano 8 (2014) 841-849.

[4] Sun CZ, Bai BF*, Lu WQ*, Liu J. Shear-rate dependent effective thermal conductivity of H2O+SiO2 nanofluids. Physics of Fluids, 2013, 25(5): 052002.

[3] Chengzhen Sun, Wen-Qiang Lu*, Jie Liu, Bofeng Bai. Molecular dynamics simulation of nanofluid’s effective thermal conductivity in high-shear-rate Couette flow. Int. J. Heat Mass Transfer 54 (2011) 2560-2567.

[2] Chengzhen Sun, Wen-Qiang Lu*, Bofeng Bai, Jie Liu. Anomalous enhancement in thermal conductivity of nanofluid induced by solid walls in a nanochannel. Appl. Thermal Eng. 31 (2011) 3799-3805.

[1] Chengzhen Sun, Wen-Qiang Lu*, Bofeng Bai, Jie Liu. Transport properties of Ar-Kr binary mixture in nanochannel Poiseuille flow. Int. J. Heat Mass Transfer 55 (2011) 1732-1740. 

个人论文引用情况请见Google学术主页(Chengzhen Sun

中文文章

[11] 孙成珍*, 刘美, 白博峰, 伍家忠, 史永兵. 无机盐离子对石英表面油-水润湿性的影响. 科学通报, 2020, 修稿

[10] 孙成珍*, 白博峰. 石墨烯基分离膜可行吗? 科学通报, 2020, 65: 3-5. 

[9] 孙成珍*, 周润峰, 白博峰. 基于静电效应的石墨烯纳米孔选择性渗透特性. 物理化学学报, 2019, 1911044. (SCI收录

[8] 孙成珍, 白博峰*. 气体分子在石墨表面的吸附与扩散. 工程热物理学报, 2018, 39: 110-113.

[7] 温伯尧, 孙成珍, 车煜全, 白博峰*. 十二烷基苯磺酸钠在癸烷-水界面吸附的MD模拟. 工程热物理学报, 2016, 37: 1011-1015.

[6] 郑文秀, 孙成珍, 熊涛, 吕小明,白博峰*. 壁面粗糙度对油-水-固三相接触线的影响. 工程热物理学报, 2016, 37: 1901-1905.

[5] 温伯尧, 孙成珍, 白博峰*. 多孔石墨烯分离 CH4/CO2 的分子动力学模拟. 物理化学学报, 2015, 31: 261-267. (SCI收录

[4] 孙成珍, 张峰, 柳海, 白博峰*. 多孔石墨烯气体分离膜分子渗透机理. 化工学报, 65 (2014) 3026-3031.

[3] 孙成珍, 白博峰*, 卢文强, 刘捷. 剪切流场中纳米流体等效热导率的实验测量. 工程热物理学报, 2013, 34(12): 2288-2291.

[2] 孙成珍, 卢文强*, 白博峰, 刘捷. 原子势能对纳米通道中二元流体形态和传热特性的影响. 工程热物理学报, 2012, 33(11): 1908-1911.

[1] 孙成珍, 卢文强*, 刘捷, 白博峰. 高剪切率的Couette流下液氩流体热导率的分子动力学模拟. 工程热物理学报, 2011, 32(7): 1153-1156. 

发明专利

[2] 孙成珍, 白博峰. 一种多孔石墨烯分离膜及其制备方法. 国家发明专利, 2020100552657

[1] 孙成珍, 白博峰, 卢文强. 剪切流场中非牛顿流体等效热导率测量装置. 国家发明专利, ZL201210150189.3

版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 联系电话:82668579 82668902 QQ群号:496666580
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Firefox 以上