论文期刊

Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars




作者: Li Wang*,Jingyi Wang, Zixuan Wang, Chi He, Wei Lyu, Wei Yan*, Liu Yang
发表/完成日期: 2018-08-12
期刊名称: Chemical Engineering Journal
期卷: 354
相关文章:
论文简介
A novel La-doped magnetic biochar was synthesized by a co-precipitation method for efficient Sb(V) removal. In contrast to pristine biochar and un-doped magnetic biochar, the Sb(V) adsorption capacity in La-doped magnetic biochar was greatly improved, increasing from 2.22 mg/g and 4.85 mg/g to 18.92 mg/g at pH of 7.0, respectively. The enhanced Sb(V) adsorption remained over a wide pH range (2-10), despite the existence of Cl-, SO42-, NO3-, HCO3-, or H2PO4-. These competing anions had little interference with Sb(V) sorption except HCO3- and H2PO4-. The combined results of TEM, XRD, FTIR and XPS further confirmed that La atom was successfully doped into the Fe3O4 structure. The point of zero charge of the biochar increased accordingly with a number of hydroxyl groups (i.e.≡La–OH) formed on the surface. Although the magnetic performance decreased after La doping, La-doped magnetic biochar still showed high separation potential. The comparison of FTIR and XPS analyses before and after Sb(V) adsorption revealed that the formation of inner-sphere La–O–Sb complex was the dominant contribution for Sb(V) sorption enhancement. Meanwhile, other mechanisms such as hydrogen bonding, electrostatic attraction and ligand exchange were also involved. All the results suggested that La-doped magnetic biochars could serve as promising adsorbents for Sb(V) pollution minimization.
版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 IPhone版本下载 IPhone版本下载    Android版本下载 Android版本下载
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Fifefox 以上