获奖

·           国家科学技术进步一等奖(创新团队奖成员)2017

           项目名称“西安交通大学热质传递的数值预测控制及其工程应用创新团队”

   主要成员:陶文铨,何雅玲,王秋旺,何茂刚,唐桂华,屈治国,李增耀,曾敏,李印实,赵存陆,刘迎文,陶于兵,张剑飞,杨卫卫,陈黎

·           国家自然科学二等奖2013

           项目名称“燃料电池中多相能质传递与反应动力学的相互作用机理”

           完成人:赵天寿,杨浩,陈蓉,刘建国,杨卫卫

著作

 一、Book Chapters

[1]     T.S. Zhao, W.W. Yang, FUEL CELLS - DIRECT ALCOHOL FUEL CELLS | Modeling, Encyclopedia of Electrochemical Power Sources, 2009, Pages 436-445, Elsevier, ISBN-13: 978-0-444-52093-7.

[2]     赵天寿, 杨卫卫, 燃料电池中多相多组分传输过程的模拟 (442)10000个科学难题:物理学卷》北京:科学出版社. ISBN 978-7-03-024269-3.

二、Papers

(1) Fuel cell

[1]    W.Z. Li, W.W. Yang*, W.Y. Zhang, Z.G. Qu, Y.L. He, Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation, Int. J. Hydrogen Energy, 44 (2019) 22194 -22209.

[2]    Li Wei-zhuo, Yang Wei-wei*, Qu Zhi-guo, Bai Xiao-shuai, Genetic algorithm optimization of the blocked cathode flow channel for a PEM fuel cell based on three-dimensional CFD modeling, ICPFCST2019, Xi'an, 2019.

[3]    闫飞宇, 李伟卓, 杨卫卫*, 何雅玲基于Bagging集成神经网络模型的燃料电池性能预测方法2019中国科学:技术科学, 2019(49)391-401.

[4]    李伟卓闫飞宇邓一鸣杨卫卫*李印实 PEMFC阴极流道中阻块高度的敏度分析与优化2019工程热物理学报,录用.

[5]    W.W. Yang*, M. Y. Lu, Y.L. He, “Performance study of an alkaline direct ethanol fuel cell with a reduced two-dimensional mass transport model”, Int. J. Hydrogen Energy, 2016. 41(45):20693-20708.

[6]    杨卫卫李印实何雅玲直接甲醇燃料电池瞬态特性的数值模拟研究工程热物理学报 2013 , 34 (6) :1118-1122. EI: 20132716471122

[7]    W.W. Yang, Y.L. He, Y.S. Li, “Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell”, Int. J. Hydrogen Energy, 37(2012) I8412-I8424.

[8]    X.Y. Li, W.W. Yang, Y.L. He, T.S. Zhao, Z.G. Qu, “Effect of anode microporous layer on species crossover through the membrane of liquid-feed direct methanol fuel cells”, Applied Thermal Engineering, 48(2012)392-401.

[9]    W.W. Yang, T.S. Zhao, Q.X. Wu, “Modeling of a passive direct methanol fuel cell operating with neat methanol,” Int. J. Hydrogen Energy 36 (2011) 6899-6913.

[10]  X.Y. Li, W.W. Yang, Y.L. He, “Effect of anode micro-porous layer on water transport through membrane electrode assembly of liquid-feed direct methanol fuel cells,” International workshop on heat transfer advances for energy conservation and pollution control, October 17-20, 2011, Xi’an, China.

[11]  T.S. Zhao, W.W. Yang, R. Chen, et al., “Toward operating direct methanol fuel cells with highly-concentrated fuel,” J.  Power Sources 195 (2010) 3451-3462.

[12]  W.W. Yang, T.S. Zhao, “Numerical investigations of the effect of the membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell,” J. Power Sources 188 (2009) 433–446.

[13]  W.W. Yang, T.S. Zhao, “An approach for determining the liquid water distribution in a liquid-feed direct methanol fuel cell,” J. Power Sources 190 (2009) 216–222.

[14]  W.W. Yang, T.S. Zhao, Y.L. He, “Modeling of coupled electron and mass transport in anisotropic PEM fuel cell electrodes,” J. Power Sources 185 (2008) 765-775.

[15]  W.W. Yang, T.S. Zhao, “A transient two-phase mass transport model for liquid feed direct methanol fuel cells,” J. Power Sources 85 (2008) 1131-1140.

[16]  W.W. Yang, T.S. Zhao, “A two-dimensional, two-phase mass transport model for liquid-feed DMFCs,” Electrochimica Acta 52 (2007) 6125-6140.

[17]  W.W. Yang, T.S. Zhao, “Two-phase mass transport model for DMFCs with the effect of non-equilibrium evaporation and condensation,” J. Power Sources 174 (2007) 136-147.

[18]  W.W. Yang, T.S. Zhao, C. Xu, “Three-dimensional two-phase mass transport model for direct methanol fuel cells,” Electrochimica Acta.53 (2007) 853-862.

[19]  W.W. Yang, T.S. Zhao, C. Xu, “Numerical investigation of two-phase flow and transport phenomena in liquid-feed direct methanol fuel cell”, The 5th International Fuel Cell Science, Engineering and Technology Conference, Brooklyn, New York, USA, June 18-20, 2007.

[20]  C.Y. Du, T.S. Zhao, W.W. Yang, “Effect of Methanol Crossover on the Cathode Behavior of a DMFC: A Half-Cell Investigation,” Electrochimica Acta 52(2007) 5266-5271.

[21]  R. Chen, T.S. Zhao, W.W. Yang, C. Xu, “Two-dimensional two-phase thermal model for passive DMFCs,” J. Power Sources 175 (2008) 276-287.

[22]  C. Xu, T.S. Zhao, W.W. Yang,Modeling of water transport through themembrane electrode assembly for direct methanol fuel cells,” J. Power Sources 178 (2008) 291-308.  

[23]  T.S. Zhao, R. Chen, W.W. Yang, C. Xu, “Small direct methanol fuel cells with passive supply of reactants,” J. Power Sources 191 (2009) 185-202.

[24]  Y.S. Li, T.S. Zhao, W.W. Yang, “Measurements of water uptake and transport properties in anion-exchange membranes,” Int. J. Hydrogen Energy 35 (2010) 5656-5665.

[25]  J.B. Xu, T.S. Zhao, W.W. Yang, S.Y. Shen, “Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells,” Int. J. Hydrogen Energy 35 (2010) 8699-8706.

[26]  Q. Xu, T.S. Zhao, W.W. Yang, R. Chen, “A flow field enabling operating direct methanol fuel cells with highly concentrated methanol,” Int. J. Hydrogen Energy, 36 (2011) 6899-6913.

[27]  Q.X. Wu, T.S. Zhao, W.W. Yang, “Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol,” Int. J. Heat & Mass Tran. 54 (2011) 1132-1143.

[28]  Y.L. He, Z. Miao, W.W. Yang, “Characteristics of heat and mass transport in a passive direct methanol fuel cell operated with concentrated methanol”, Int. J. Hydrogen Energy, 208(2012)180-186.

[29]  Y.S. Li, Y.L. He, W.W. Yang, "Performance characteristics of air-breathing anion-exchange membrane direct ethanol fuel cells", Int. J. Hydrogen Energy, 38 (2013) 13427-13433.

[30]  Y.S. Li, Y.L. He, W.W. Yang, “A high-performance direct formate-peroxide fuel cell with palladium-gold alloy coated foam electrode”, J. Power Sources, 278(2015)569-573.

[31]  T.S. Zhao, C. Xu, R. Chen, W.W. Yang, “Mass transport phenomena in direct methanol fuel cells,” Progress in Energy and Combustion Science 35 (2009) 275-292.

[32]  Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, “Effects of anode micro porous layers made of carbon powder and nanotubes on water transport in direct methanol fuel cells,”J. Power Sources 191 (2009) 304-311.

[33]  Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, “Microfluidic- structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels,” J. Micromech. Microeng. 20 (2010) 045014.

[34]  Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, “Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol,” Int. J. Hydrogen Energy 35(2010) 10547-10555.

[35]  Y.L. He, Z. Miao, T.S. Zhao, W.W. Yang, “Numerical study on the effects of the GDL structure on water crossover in a direct methanol fuel cell”, Int. J. Hydrogen Energy,   37(2012) 4422-4438.

(2) Flow battery

[1]    M.Y. Lu, W.W. Yang*, X.S. Bai, Y.M. Deng, Y.L. He, Performance improvement of a vanadium redox flow battery with asymmetric electrode designs, Electrochimica Acta 319 (2019) 210-226.

[2]    M.Y. Lu, W.W. Yang*, Y.M. Deng, W.Z. Li, Q. Xu , Y.L. He, Mitigating Capacity Decay and Improving Charge-Discharge Performance of a Vanadium Redox Flow Battery with Asymmetric Operating Conditions, 2019, Electrochimica Acta, 2019(309)283-299.

[3]    Q. Xu*, L.Y. Qin, Y.N. Ji, P.K. Leung, H.N. Su, F. Qiao, W.W. Yang*, A.A. Shah, H.M. Li, A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability, Electrochimica Acta, 293 (2019) 426-431.

[4]    Meng-Yue Lu, Wei-Wei Yang*, Yi-Ming Deng, Ya-Ling He, Mitigating Capacity Decay of a Vanadium Flow Battery with Bilateral Multistep Addition Strategy, The 1st World Energy Storage Conference, 2019.05.18-05.19,Beijing, P.R. China.

[5]    W.W. Yang*, F.Y. Yan, Z.G. Qu, Y.L. He, Effect of Various Strategies of Soc-dependent Operating Current on Performance of a Vanadium Redox Flow Battery, Electrochimica Acta, 259(2018)772-782.

[6]    Q. Wang, Z.G. Qu*, Z.Y. Jiang, W.W. Yang*, Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode, Applied Energy, 213(2018)293-305.

[7]    Q. Wang, Z.G. Qu*, Z.Y. Jiang, W.W. Yang*, Numerical study on vanadium redox flow battery performance with non-uniform compressed electrode and serpentine flow field, Applied Energy, 220(2018) 106-116.

[8]    W.W. Yang*, Y.L. He, Y.S. Li, “Performance Modeling of a Vanadium Redox Flow Battery during Discharging”, Electrochimica Acta 155 (2015) 279-287.

[9]    邓一鸣卢梦月杨卫卫*, 液流电池三维多物理模型及不同流场结构对电池性能的影响研究, 中国工程热物理传热传质学会议, 2019.

[10]  卢梦月杨卫卫*邓一鸣李印实不对称孔隙率对全钒液流电池性能的影响中国工程热物理学会传热传质学会议2018.10.12-2018.10.15哈尔滨中国

(3)Energy storage and solar energy utlization

[1]    Z. Ma, M.J. Li, W.W. Yang*, Y.L. He, General performance evaluation charts and effectiveness correlations for the design of thermocline heat storage system, Chemical Engineering Science, 185(2018)105-115.

[2]    Z. Ma; W.W. Yang, M.J. Li, Y.L. He, High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions, Applied Energy, 230(2018)769-783.

[3]    Z. Ma, W.W. Yang*, F. Yuan, B. Jin, Y.L. He, Investigation on the thermal performance of a high-temperature latent heat storage system, Applied Thermal Engineering, 122 (2017) 579-592.

[4]    Zhao Ma, Ya-Ling He, Wei-Wei Yang, A general graphical criterion for the design and calibration of thermocline thermal energy storage, ASCHT, Nov. 10-13, 2017, Madras, India

[5]    S. Du, Y.L. He, W.W. Yang, Z.B. Liu, Optimization method for the porous volumetric solar receiver coupling genetic algorithm and heat transfer analysis, Int. J. Heat Mass Transfer, 122(2018)383-390.

[6]    Y.P. Zhou, M.J. Li, W.W. Yang, Y.L. He, The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process, Applied Energy, 213(2018): 169-178

[7]    Y.L. He, D. H. Mei, W. Q. Tao, W.W. Yang, H. L. LiuSimulation of the parabolic trough solar energy generation system with organic Rankine cycle”, Applied energy, 97(2012)630-641,

[8]    何雅玲杜燊李明佳杨卫卫刘占斌. 一种多孔介质太阳能吸热器结构和运行参数优化方法. 发明专利. 专利号ZL 201710828897.0授权日期2019.07.23申请日2017.09.14.

(4)Waste heat recovery

[1]    W.W. Yang*, X.Q. Cao, Y.L. He, F.Y. Yan, Theoretical study of a high-temperature heat pump system composed of a CO2 transcritical heat pump cycle and a R152a subcritical heat pump cycle, Applied Thermal Engineering, 120(2017)228-238.

[2]    X.Q. Cao, W.W. Yang*, Y. L. He, F. Zhou, Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery, Applied Thermal Engineering, 71(2014)291–300.

[3]    杨卫卫*周福闫飞宇何雅玲余热回收利用的高温热泵系统混合工质选择研究工程热物理学报 2017 , 38 (5) :907-913. EI: 20172703878223

[4]    周福杨卫卫*曹兴起何雅玲三种高温热泵混合工质的理论研究工程热物理学报2015 , 36(4) :703-708. EI: 20161302155253

[5]    杨卫卫*曹兴起周福何雅玲T-Q图分析几种余热回收方式的性能工程热物理学报, 2015 , 36 (10) :2107-2110. EI: 20161302154744

[6]    杨卫卫*曹兴起何雅玲周福, 一种带中间换热器的双热源高温热泵系统, 西安交通大学学报 2014 , 48 (11) :70-74. EI: 20144900285688

[7]    曹兴起赵晖杨卫卫*何雅玲周福一种实现低品位余热与LNG冷能综合利用的复合循环系统热力发电 2014 (12) :49-55

[8]    何雅玲韩辉李明佳杨卫卫王煜. 一种用于余热回收的椭圆管H型翅片换热器. 发明专利. 专利号ZL 201310354388.0授权日期2015.07.01申请日2013.08.14.

(5)Heat transfer enhancement

[1]    Y.L. He, W.W. Yang, W.Q. Tao, “Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure,” Numerical Heat Transfer Part A: Applications 47(2005) 917-934.

[2]    W.W. Yang, Y.L. He, W.Q. Tao, “Numerical study of fully developed laminar pulsating flow in partially heated pipe”, The 1st Korea-China Numerical Heat Transfer Joint Conference, Cheju, Korea, March 23-25, 2004.

[3]    Y.L. He, W.W. Yang, W.Q. Tao, “Three-dimensional numerical study of natural convective heat transfer of liquid for two heaters installed in a cubic enclosure”, The 3rd International Symposium on Advances in Computational Heat Transfer, Norway, April 19-24, 2004.

[4]    Y. Wang, Y.L. He, W.W. Yang, Z.D. Cheng, “Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow”, Int. J. Heat and Mass Transfer, 82 (2015)51-65.  

[5]    Jian-fei Zhang, Long Jia, Wei-wei Yang, Jan Taler, Pawel Oclon, Multi-parameter optimization of flow and heat transfer of a microchannel with longitudinal vortex generators, International Journal of Thermal Science, 141(2019) 211-221.

[6]    杨卫卫何雅玲黄竞赵春风陶文铨多孔材料强化管内对流换热的数值研究工程热物理学报2007281: 104-106.

[7]    何雅玲杨卫卫赵春风陶文铨脉动流动强化换热的数值研究工程热物理学报2005263: 495-497.

[8]    杨卫卫何雅玲陶文铨赵春风凹槽通道中脉动流动强化传质的数值研究西安交通大学学报20043811: 1119-1122.

[9]    杨卫卫何雅玲徐超陶文铨平直通道中脉动流动的数值模拟研究西安交通大学学报2004389: 935-928.

[10]  杨卫卫何雅玲徐超陶文铨二维方腔非稳态自然对流的数值模拟研究工程热物理学报2004252: 281-284.

[11]  何雅玲黄竞杨卫卫高凡陶文铨. 多孔介质内交变流动和换热计算软件. 软件著作权2008SR05669.

[12]  何雅玲陶文铨丁文静黄竞杨卫卫. 交变流动和换热计算软件. 软件著作权2008SR05668. 

版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 IPhone版本下载 IPhone版本下载    Android版本下载 Android版本下载
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Fifefox 以上